【一周算法实践】__1.模型构建

本文对比了三种机器学习模型(逻辑回归、SVM和支持向量机、决策树)在预测贷款用户是否逾期任务上的表现。通过对准确率和F1分数的分析,发现决策树模型在准确率上略低于逻辑回归和SVM模型,但提供了更丰富的预测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

预测贷款用户是否逾期

数据集下载:https://pan.baidu.com/s/1dtHJiV6zMbf_fWPi-dZ95g

1.导入模块


import numpy as np
import pandas as pd

from sklearn.model_selection import train_test_split,cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import f1_score,accuracy_score,recall_score

2.划分X和y并简单分析数据


X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=2018)
print(len(X_train))
print(len(X_test))
print(len(y_test[y_test==0])/len(y_test))

3327
1427
0.7484232655921513

训练集数量:测试集数量=3:1


3.构建模型进行预测


# LogisticRegression模型
clf_Lr=LogisticRegression(random_state=0,solver='lbfgs').fit(X_train,y_train)
y_test_pred=clf_Lr.predict(X_test)
Lr_acc=accuracy_score(y_test,y_test_pred)
f1=f1_score(y_test,y_test_pred,average='micro')
print(f1)
print(Lr_acc)
print(np.unique(y_test_pred))

0.7484232655921513
0.7484232655921513
[0]
#SVM模型
clf_SVM=SVC(gamma='auto').fit(X_train,y_train)
y_test_pred=clf_SVM.predict(X_test)
SVM_acc=accuracy_score(y_test,y_test_pred)
f1=f1_score(y_test,y_test_pred,average='micro')
print(f1)
print(SVM_acc)
print(np.unique(y_test_pred))

0.7484232655921513
0.7484232655921513
[0]
#决策树模型
clf_Tree=DecisionTreeClassifier(random_state=0).fit(X_train,y_train)
y_test_pred=clf_Tree.predict(X_test)
Tree_acc=accuracy_score(y_test,y_test_pred)
f1=f1_score(y_test,y_test_pred,average='micro')
print(f1)
print(Tree_acc)
print(np.unique(y_test_pred))

0.6629292221443588
0.6629292221443588
[0 1]

通过对比可以看出,LR模型和SVM模型的准确率相同,决策树模型的准确率略低。但是LR模型和SVM模型都将测试集中样本预测为 0 ,分析可得len(y_test[y_test==0])/len(y_test)=0.7484232655921513。因此选用决策树模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值