创建更新与保存
import networkx as nx
import json
import requests
# 示例对话内容
dialogue = """
客户:你好,我想了解一下产品的保修政策。
坐席:您好!我们的产品保修期为一年,从购买之日起计算。
客户:如果产品在保修期内出现故障,我该怎么办?
坐席:您可以在保修期内将产品送到我们指定的维修点进行免费维修。
客户:维修点在哪里?
坐席:您可以在我们的官方网站上查询最近的维修点地址。
"""
# 手动解析对话内容
def parse_dialogue(dialogue):
lines = dialogue.strip().split("\n")
questions = []
answers = []
for i in range(0, len(lines), 2):
question = lines[i].replace("客户:", "").strip()
answer = lines[i + 1].replace("坐席:", "").strip()
questions.append(question)
answers.append(answer)
return questions, answers
questions, answers = parse_dialogue(dialogue)
print("问题:", questions)
print("答案:", answers)
# 生成需要补充的问题
def generate_supplement_questions(questions, answers):
prompt = "基于以上对话内容,您认为还需要补充哪些问题?请以问题的形式列出。\n"
for q, a in zip(questions, answers):
prompt += f"问题:{q}\n答案:{a}\n"
prompt += "需要补充的问题:"
# 调用 Ollama API 生成补充问题
data = {
"model": "qwen2.5:14b",
"prompt": prompt,
"stream": False,
"temperature": 0.7,
"max_tokens": 200
}
response = requests.post("http://127.0.0.1:11434/api/generate", json=data)
if response.status_code == 200:
return response.json().get("response", "")
else:
return f"API 请求失败,状态码:{response.status_code}"
# 生成需要补充的问题
supplement_questions = generate_supplement_questions(questions, answers)
print("需要补充的问题:", supplement_questions)
# 专家回答
def expert_answers(supplement_questions):
print("专家,请回答以下问题:")
print(supplement_questions)
answers = []
for q in supplement_questions.split("\n"):
if q.strip():
print(f"问题:{q}")
answer = input("专家回答:")
answers.append(answer)
return answers
# 专家回答
expert_answers_list = expert_answers(supplement_questions)
print("专家的回答:", expert_answers_list)
# 构建知识树
def build_knowledge_tree(questions, answers, supplement_questions, expert_answers):
tree = nx.DiGraph()
root = "产品保修"
tree.add_node(root)
for q, a in zip(questions, answers):
tree.add_node(q)
tree.add_edge(root, q)
tree.add_node(a)
tree.add_edge(q, a)
for q, a in zip(supplement_questions.split("\n"), expert_answers):
if q.strip():
tree.add_node(q)
tree.add_edge(root, q)
tree.add_node(a)
tree.add_edge(q, a)
return tree
# 构建知识树
knowledge_tree = build_knowledge_tree(questions, answers, supplement_questions, expert_answers_list)
# 保存知识树为JSON格式
def save_knowledge_tree(tree, filename):
tree_data = nx.node_link_data(tree)
with open(filename, 'w', encoding='utf-8') as f:
json.dump(tree_data, f, ensure_ascii=False, indent=4)
# 保存知识树
save_knowledge_tree(knowledge_tree, 'knowledge_tree.json')
显示知识树
import networkx as nx
import json
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
# 加载JSON格式的知识树
def load_knowledge_tree(filename):
with open(filename, 'r', encoding='utf-8') as f:
tree_data = json.load(f)
return nx.node_link_graph(tree_data)
# 设置字体路径
font_path = "/System/Library/Fonts/STHeiti Light.ttc" # macOS系统自带的黑体字体路径
font_prop = FontProperties(fname=font_path)
# 可视化知识树
def visualize_tree(tree):
pos = nx.spring_layout(tree, k=0.5, iterations=20) # 节点布局
nx.draw(tree, pos, with_labels=True, node_size=500, node_color="skyblue", font_size=8, font_weight='bold', font_family=font_prop.get_name())
plt.title("知识树", fontproperties=font_prop)
plt.axis('off') # 关闭坐标轴
plt.show()
# 加载知识树
knowledge_tree = load_knowledge_tree('knowledge_tree.json')
# 可视化知识树
visualize_tree(knowledge_tree)