Project Euler Problem 14

本文介绍了一个数学问题的编程解法——寻找小于一百万的正整数中,根据特定规则生成的Collatz序列最长的起始数。通过递归函数计算序列长度,并使用循环结构找出目标数字。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem 14

The following iterative sequence is defined for the set of positive integers:

nn/2 (n is even)
n → 3n + 1 (n is odd)

Using the rule above and starting with 13, we generate the following sequence:

13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
Which starting number, under one million, produces the longest chain?
NOTE: Once the chain starts the terms are allowed to go above one million.
# n → n/2 (若n为偶数)n → 3n + 1 (若n为奇数),最终都会变成 1
# 从小于一百万的哪个数开始,能够生成最长的序列呢?
def collatz_length(n,length):
    if n == 1:
        return length+1
    if n % 2 == 0:
        length += 1
        return collatz_length(int(n/2),length)
    else:
        length += 1
        return collatz_length(3*n+1,length)

def longest_chain(n):
    length = 1
    longest = 0
    number = 0
    i = 1
    while i <= n:
        temp = collatz_length(i,length)
        if temp > longest:
            longest = temp
            number = i
        i += 1
    return longest,number

print(longest_chain(1000000))
结果:837799 , 序列长度526,运行时间40s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值