CDS540 Python/Java

Java Python CDS540 Assignment 1 - Text Detection from Images Using OpenCV
Task objective
The objective of this assignment is to use Google Colab, Jupyter Notebook, or any other suitable tool to detect text from images using OpenCV. This will help you understand the concepts of fundamental Computer Vision algorithms and techniques, evaluate the efficiency and effectiveness of computer vision systems, and apply and implement these tools and techniques. Task description:
1.Setup Environment:
oUse Google Colab, Jupyter Notebook, or any other platform you are comfortable with.
oEnsure that OpenCV and other necessary libraries are installed.
2.Load an Image:
oLoad a sample image containing text. You can use images from various sources like scanned documents, street signs, or any image with clear text.
3.Pre-process the Image:
oConvert the image to grayscale.
oApply necessary image processing techniques like thresholding, blurring, or edge detection to enhance text visibility.
4.Text Detection:
oUse OpenCV's text detection methods such as the EAST text detector, or any other OpenCV-compatible methods.
oDraw bounding boxes around detected text areas.
5.Extract and Display Text:
oUse OCR (Optical Character Recognition) tools like Tesseract to extract text from the detected regions.
oDisplay the extracted text and the annotated image with bounding boxes.
6.Efficiency and Effectiveness Evaluation:
oMeasure the performance of your text detection system.
oDiscuss the efficiency (speed) and effectiveness (accuracy) of your approach.
oSuggest potential improvements.
Rubric
Criteria Poi CDS540、Python/Java nts
Understand the concepts of fundamental Computer Vision algorithms and techniques 10%
- Demonstrates a clear understanding of image pre-processing techniques
- Explains the chosen text detection method and its working
Evaluate the efficiency and effectiveness of computer vision systems 10%
- Measures and reports the speed of the text detection system
- Evaluates the accuracy of detected text
- Provides a discussion on the system's strengths and weaknesses
Apply and implement the computer vision tools and techniques 20%
- Successfully loads and processes the image
- Implements text detection and draws bounding boxes correctly
- Uses OCR to extract and display text from images
- Code is well-organized, commented, and follows best practices
Total Points 40%

Deliverables
1.A Jupyter Notebook (or equivalent) with your code and in-line explanations.
2.Images used for testing.
3.A brief report (1000-2000 words) evaluating the performance of your text detection system.

Submission Details:
1.You must ensure that all your project files used for this task and the report sit in a directory called “Assignment 1 – Your Name”.
2.All files are required to be uploaded and a link to the “Assignment 1” directory submitted to Moodle.
3.Please make sure that unit Instructor and TA have access to the folder.
4.A link to the demo video of your app running must be submitted.
5.It would be great if you could submit your GitHub link.
6.This is an individual assignment, and you should submit it by 8 pm, Friday, Week 7         

03-31
<think>好的,用户想查找与CDS API相关的技术资料或使用方法,即Cloud Directory Service API的使用或文档。首先,我需要确认CDS的全称是什么,因为在云计算领域,CDS可能有不同的含义。常见的可能性包括Cloud Directory Service(云目录服务)或者可能与特定云服务商相关的服务,比如AWS、Google Cloud、Azure等。 接下来,我需要查看用户提供的引用内容,看看是否有相关线索。引用[1]提到Google Cloud的服务帐户,引用[2]涉及Kubernetes的高可用配置,引用[3]是一个API调用示例,引用[4]是Logstash的配置。这些引用中没有直接提到CDS API,但用户可能是在某个云平台上使用该服务,比如Google Cloud。 考虑到用户提到了Cloud Directory Service,这可能是指某个特定云服务商的目录服务。例如,AWS的Cloud Directory是一种托管服务,用于构建灵活的云原生目录,而Google Cloud可能有类似的服务。需要进一步确认各云服务商的相关文档。 接下来,我应该指导用户访问对应云服务商的官方文档。例如,如果是AWS的Cloud Directory Service,可以给出AWS的文档链接;如果是Google Cloud的Directory Service,则提供Google的链接。此外,可能需要说明如何查找API的使用方法,比如通过REST API文档、SDK示例或CLI命令。 同时,用户可能需要身份验证方面的帮助,比如使用服务帐户(如引用[1]中的内容)来调用API,或者配置API访问权限。因此,在回答中需要涵盖这些方面,并引用相关部分。 最后,生成相关问题以帮助用户进一步探索,比如如何认证、最佳实践或与其他服务集成等。</think>### Cloud Directory Service (CDS) API 使用指南 根据您提到的CDS API(可能为云目录服务API),以下是分步骤的参考资料获取方法及核心要点: 1. **确认云服务商平台** - 若使用 **AWS Cloud Directory**,参考:[AWS Cloud Directory 官方文档](https://docs.aws.amazon.com/clouddirectory/) 提供目录结构管理、对象操作API,支持多租户模式[^1]。 - 若使用 **Google Cloud Directory**,参考:[Google Cloud Identity 文档](https://cloud.google.com/identity/docs) 主要用于用户/设备目录管理,与企业身份认证集成[^1]。 2. **API 调用方式** - **REST API 格式**: 类似引用[3]中的通用结构,例如: ```bash POST https://api.cloudprovider.com/cds/v1/{directoryId}/objects ``` - **身份认证**:需配置服务账号(如引用[1]所述),通过OAuth 2.0或API密钥认证。 3. **SDK 与代码示例** 主流云平台提供Python/Java SDK: ```python # AWS示例(需安装boto3) import boto3 client = boto3.client('clouddirectory') response = client.list_directories() ``` 4. **关键功能操作** - 目录结构定义(Schema) - 对象创建/查询 - 权限策略绑定
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值