Math 3A: Summer II 2024 Final Practice ExamC/C++

Java Python Final Practice Exam

Math 3A: Summer II 2024

Problem 1. (15 points) Given 

(a) Determine the eigenvalues and corresponding eigenvetors of A.

(b) Diagonalize A.

Problem 2. (15 points) Given 

(a) Find a basis for the nullspace of A.

(b) Verify that the Rank-Nullity Theorem applies to A.

Problem 3. (10 points) Let

and

Write down the matrices that take  to 

Problem 4. (20 points) Determine if the following statements are true or false. Explain why.

(a) If the number of equations in a linear system exceeds the number of unknowns, then the system must be inconsistent.

(b) If a matrix is in reduced row echelon form, then it is Math 3A: Summer II 2024 Final Practice ExamC/C++ also in row echelon form.

(c) Let A, B, C be matrices. If AC = BC and C ≠ 0, then A = B.

(d) If B has a column of zeros, then so does AB if this product is defined.

(e) Let A, B be square matrices of the same size. Then A2 − B2 = (A + B)(A − B).

Problem 5. (15 points) Suppose that  is a basis for the nullspace of the matrix A − 3I3 and that  is a basis for the nullspace of the matrix A + 5I3.

(a) Write  as a linear combination of  and 

(b) Find 

Problem 6. (10 points) Let

Find a diagonal matrix D and an invertible matrix P such that A = PDP −1. Find A10.

Problem 7. (15 points) Given the matrix  find the characteristic polynomial of H and determine if H is diagonalizable. If it is, find the diagonal matrix and the corresponding eigenbasis         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值