FINM3407 - Behavioural Finance Semester 2 2023Python

Java Python FINM3407 - Behavioural Finance

1.General Course Information

1.1 Course Details Course Code:FINM3407

Course Title:Behavioural Finance

Coordinating Unit: School of Business Semester:Semester 2,2023

Mode:External

Level:Undergraduate

Delivery Location:External (administered at St Lucia) Number of Units:2

Pre-Requisites:(FINM2415+2416)or(FINM2411+3412)or(ECON1310+2010)

Course Description: This course provides an introduction to behavioural fnance,a discipline thatintegrates insights from psychology into the study  of finance.There wil be a focus on understandingthepsychological underpinings of financialdecision-making as well as the institutional frictions   that may allow these psychological mechanisms to influence economic outcomes.Applicationsinclude the pricing of assetsrelative tofundamental value,trading strategies,managerial behaviour,and household savings and investment decisions.

1.2 Course Introduction

Behavioral inanceis athird-yearundergraduate course designed to explorethe intersection between psychology and finance.This course aims to provide students with a comprehensive understanding of howindividualand group behavior. inluences financial markets,investment decisions,and overall conomic outcomes.By studying the principles and theories of behavioral finance,students wil develop critical thinking skilland gain insights into thefactors that drive market anomalies,investor biases,and decision-making processes.

Course Changes in Responseto Previous Student Feedback

Asthis isthe inaugural offering of this course,we have notmadeany changesor modifcations based on previous iterations.Your feedbackwil be invaluable in helping us refine and improvethe course forfuture offerings.

1.3 Course Staff

Course Coordinator:Associate Professor Kelvin Tan

1.4 Timetable

Timetables are availableon the UQ Public Timetable.(https://my.uq.edu.au/public-timetable)

Additional Timetable Information

This course will consist of lectures and tutorials during theteaching weeks.

Lecture sessions commence in semester week 1.

Tutorials commence in semester week 2.Students are required to attend the tutorial to which they are enrolled each week.

Please note:Teaching staff do not have access to the timetabling system to help with class allocation.Therefore,should you need help with your  timetable and/or  allocation of classes,please ensureyou email   business.mytimetable@ugedu.au(mailtobusiness.mytimetable@ug.edu.au)from your UQ student email account with the following details:

Full   name,

·Student   ID,and

·the Course Code

2.1 Course Aims

Behavioralfinanceis athird-yearundergraduate course designed to ex FINM3407 - Behavioural Finance Semester 2,2023Python plorethe intersection between psychology and finance.This course aims to provide students with a comprehensive understanding of howindividualand group behavior. influences financial markets,investment decisions,and overall conomic outcomes.By studying the principles and theories of behavioral finance,students wil develop crtical thinking skilland gain insights into the factors that drive market anomalies,investor biases,and decision-making processes.

2.2 Learning Objectives

After successfully completing this course you should be able to:

1 Understand the foundations of behavioral finance and traditional finance theories

2 Analyze Prospect Theory as an alternative to expected utility theory

3 Evaluate the challenges to market efficiency, identify market anomalies, andunderstand their benavioral explanationd

4 Identify and analyze various heuristics and biases and their implications for financial decision-making

5 Examine the role of emotions in investment decision-making and their impact on individual investors behavior.

6 Examine the manifestations of overconfidence in investors and its impact oncorporate finance

7 Work as a team to apply and analvze behavioral finance concepts in real-world scenarios, communicate findings effectively, and demonstrate collaborative problem-solving and research skills.

3.Learning Resources

3.1 Required Resources

Ackert,L,&Deaves,R.(2009).Behavioral finance:Psychologydecision-making,andmarkets (https//au.cengage.com/c/behavioral-finance psychology-44-decision-making-44-and-markets-1e-ackert-deaves/9780324661170/).CengageLearning.

http:/au.cengage.com/c/behavioral-financepsychology-44-decision-making-44-and-markets-1e-ackert-deaves/97803246611701

(http:/au.cengage.com/c/behavioral-finance-psychology-44-decision-making-44-and-markets-1eackert-deaves/9780324661170/)

3.2 Recommended Resources

No recommended learning resources

3.3 University Learning Resources

Access to required and recommended resources,plus past central exam papers,is available at the UQ Library website (http://www.library.uq.edu.au/lr/FINM3407 (http://www.ibrary.uq.edu.au/lr/FINM3407).

The University offers a range of resources and services to support tudent learning.Details areavailable on the myUQ website (htps//my.uq.edu.au/ (https://student.my.uq.edu.au/).

3.4 School of Business Learning Resources

Not applicable.

4.Teaching   &Learning Activities

4.1 Learning Activities

Recording of Lectures:Please be aware that teachingat UQ may be recorded for the benefit of student learning If you would prefer not tobe captured either by voice or image,please advise your course coordinator before class so accommodations can be made.Forfurtherinformation see PPL3.20.06 RecordingofTeaching at UQ(0)         

【电能质量扰动】基于ML和DWT的电能质量扰动分类方法研究(Matlab实现)内容概要:本文研究了一种基于机器学习(ML)和离散小波变换(DWT)的电能质量扰动分类方法,并提供了Matlab实现方案。首先利用DWT对电能质量信号进行多尺度分解,提取信号的时频域特征,有效捕捉电压暂降、暂升、中断、谐波、闪变等常见扰动的关键信息;随后结合机器学习分类器(如SVM、BP神经网络等)对提取的特征进行训练与分类,实现对不同类型扰动的自动识别与准确区分。该方法充分发挥DWT在信号去噪与特征提取方面的优势,结合ML强大的模式识别能力,提升了分类精度与鲁棒性,具有较强的实用价值。; 适合人群:电气工程、自动化、电力系统及其自动化等相关专业的研究生、科研人员及从事电能质量监测与分析的工程技术人员;具备一定的信号处理基础和Matlab编程能力者更佳。; 使用场景及目标:①应用于智能电网中的电能质量在线监测系统,实现扰动类型的自动识别;②作为高校或科研机构在信号处理、模式识别、电力系统分析等课程的教学案例或科研实验平台;③目标是提高电能质量扰动分类的准确性与效率,为后续的电能治理与设备保护提供决策依据。; 阅读建议:建议读者结合Matlab代码深入理解DWT的实现过程与特征提取步骤,重点关注小波基选择、分解层数设定及特征向量构造对分类性能的影响,并尝试对比不同机器学习模型的分类效果,以全面掌握该方法的核心技术要点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值