Regression, Classification and clustering


Assignment 2: Regression, Classification and clustering

Given the following data points:
1.What is the cost function for linear regression?
2.If we use the gradient descent algorithm to minimize the cost function for linear regression, what are the θ values and cost values in the first three iterations? Suppose the initial θ values are [1, 0.5]Tand the learning rate α is 0.1.

3. If we use one-vs-all strategy to a three class classification problem with three classes: -1, 0, 1, how many classifiers shall we train? What are they?

4.Describe the difference between linear regression and logistic regression. Please list at least three.

5. Support Vector Machines
(a)Suppose we are using a linear SVM (i.e., no kernel) and are given the following data set. Draw the decision boundary of linear SVM. Give a brief explanation.

(b)In the following image, circle the points such that by removing that example from the training set and retraining SVM, we would get a different decision boundary than training on the full sample. You do not need to provide a formal proof, but give a one or two sentence explanation.

6: K-means
(a)Consider the unlabeled two-dimensional data represented in the following figure. Using the two points marqued as squares as initial centroids, draw (on that same figure) the clusters obtained after one iteration of the k-means algorithm (k = 2).

(b)Does your solution change after another iteration of the k-means algorithm? Why?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值