Discrete Logging
Time Limit: 5000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u
Description
Given a prime P, 2 <= P < 2
31, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
BL == N (mod P)
Input
Read several lines of input, each containing P,B,N separated by a space.
Output
For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
Sample Input
5 2 1 5 2 2 5 2 3 5 2 4 5 3 1 5 3 2 5 3 3 5 3 4 5 4 1 5 4 2 5 4 3 5 4 4 12345701 2 1111111 1111111121 65537 1111111111
Sample Output
0 1 3 2 0 3 1 2 0 no solution no solution 1 9584351 462803587
Hint
The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states
for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
B(P-1) == 1 (mod P)
for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
B(-m) == B(P-1-m) (mod P) .
/*
跟上一题一样
题意:XY mod Z = K,给出x,z,k求y。(0 ≤ X, Z, K ≤ 109)其中Y (0 ≤ Y < Z).假如找不到合适的答案,请输出“No Solution”。
求解:mod z产生的集合最多有z个元素,这构成一个群。
分析:其时这个方法我还没搞明白,是从网上搞到的,这个模版还是比较稳当的
代码:*/
#include <iostream>
#include <string.h>
#include <math.h>
using namespace std;
const long long mod=800000;
const long long MAX=800000;
struct data
{
long long m,n,next;
}ln[MAX];
long long st[MAX],s;
void insert(long long m,long long n)
{
long long mm = m%mod;
long long pos = st[mm];
while(pos != -1 && ln[pos].m != m)
pos = ln[pos].next;
if(pos == -1)
{
ln[s].m = m;
ln[s].n = n;
ln[s].next = st[mm];
st[mm] = s++;
}
else ln[pos].n = n;
}
long long find(long long m)
{
long long mm=m%mod;
long long pos=st[mm];
while(pos!=-1)
{
if(ln[pos].m==m)
return ln[pos].n;
pos=ln[pos].next;
}
return -1;
}
long long MOD(long long b,long long n,long long mod)
{
long long t=1;
while(n)
{
if(n & ((__int64)1))
t = (t*b)%mod;
b = (b*b)%mod;
n >>= ((__int64)1);
}
return t%mod;
}
long long solve(long long X,long long Z,long long K)//用来求X^Y mod Z = k 中的Y
{
long long m,i,j,b;
X %= Z;
K %= Z;
s = 0;
memset(st, -1, sizeof(st));
m = (int)sqrt((double)Z);
long long t = K;
for(i=0; i <= m; i++)
{
insert(t, i);
t *= X;
t %= Z;
}
b = MOD(X, m, Z);
t = 1;
long long ans = -1;
for(i=1; i <= m; i++)
{
t *= b;
t %= Z;
long long x = find(t);
if(x != -1)
{
ans = i*m-x;
break;
}
}
if(ans != -1 && MOD(X, ans, Z) == K)
return ans;
else return -1;
}
int main()
{
long long Z,X,K;
long long power;
while(cin>>Z>>X>>K)
{
if(!X && !Z && !K)cout<<0<<endl;
power=solve(X,Z,K);
if(power!=-1)cout<<power<<endl;
else printf("no solution\n");
}
return 0;
}