import tensorflow as tf import numpy as np #create data x_data = np.random.rand(100).astype(np.float32)#在tensorflow中大部分的数据的数据类型都是float32 y_data = x_data * 0.1+0.3 #create tensorflow structure start Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))#定义初始值为-1到1 biases = tf.Variable(tf.zeros([1])) y = Weights*x_data + biases loss = tf.reduce_mean(tf.square(y-y_data)) #计算得到的y与实际的区别 #建立优化器 optimizer = tf.train.GradientDescentOptimizer(0.5)#0.5为学习效率,一般为小于1的一个数 train = optimizer.minimize(loss) init = tf.initialize_all_variables()#初始化 #create tensorflow structure end sess = tf.Session() sess.run(init) #激活 for step in range(201): sess.run(train) if step % 20 == 0: print(step, sess.run(Weights), sess.run(biases))