开篇导读
亲爱的小伙伴们大家好,马上咱们就开始实战篇的内容了,相信通过本章的学习,小伙伴们就能理解各种redis的使用啦,接下来咱们来一起看看实战篇我们要学习一些什么样的内容
- 短信登录
这一块我们会使用redis共享session来实现
- 商户查询缓存
通过本章节,我们会理解缓存击穿,缓存穿透,缓存雪崩等问题,让小伙伴的对于这些概念的理解不仅仅是停留在概念上,更是能在代码中看到对应的内容
- 优惠卷秒杀
通过本章节,我们可以学会Redis的计数器功能, 结合Lua完成高性能的redis操作,同时学会Redis分布式锁的原理,包括Redis的三种消息队列
- 附近的商户
我们利用Redis的GEOHash来完成对于地理坐标的操作
- UV统计
主要是使用Redis来完成统计功能
- 用户签到
使用Redis的BitMap数据统计功能
- 好友关注
基于Set集合的关注、取消关注,共同关注等等功能,这一块知识咱们之前就讲过,这次我们在项目中来使用一下
- 打人探店
基于List来完成点赞列表的操作,同时基于SortedSet来完成点赞的排行榜功能
以上这些内容咱们统统都会给小伙伴们讲解清楚,让大家充分理解如何使用Redis
1、短信登录
1.1、导入黑马点评项目
1.1.1 、导入SQL
1.1.2、有关当前模型
手机或者app端发起请求,请求我们的nginx服务器,nginx基于七层模型走的事HTTP协议,可以实现基于Lua直接绕开tomcat访问redis,也可以作为静态资源服务器,轻松扛下上万并发, 负载均衡到下游tomcat服务器,打散流量,我们都知道一台4核8G的tomcat,在优化和处理简单业务的加持下,大不了就处理1000左右的并发, 经过nginx的负载均衡分流后,利用集群支撑起整个项目,同时nginx在部署了前端项目后,更是可以做到动静分离,进一步降低tomcat服务的压力,这些功能都得靠nginx起作用,所以nginx是整个项目中重要的一环。
在tomcat支撑起并发流量后,我们如果让tomcat直接去访问Mysql,根据经验Mysql企业级服务器只要上点并发,一般是16或32 核心cpu,32 或64G内存,像企业级mysql加上固态硬盘能够支撑的并发,大概就是4000起~7000左右,上万并发, 瞬间就会让Mysql服务器的cpu,硬盘全部打满,容易崩溃,所以我们在高并发场景下,会选择使用mysql集群,同时为了进一步降低Mysql的压力,同时增加访问的性能,我们也会加入Redis,同时使用Redis集群使得Redis对外提供更好的服务。
1.1.3、导入后端项目
在资料中提供了一个项目源码:
1.1.4、导入前端工程
1.1.5 运行前端项目
1.2 、基于Session实现登录流程
发送验证码:
用户在提交手机号后,会校验手机号是否合法,如果不合法,则要求用户重新输入手机号
如果手机号合法,后台此时生成对应的验证码,同时将验证码进行保存,然后再通过短信的方式将验证码发送给用户
短信验证码登录、注册:
用户将验证码和手机号进行输入,后台从session中拿到当前验证码,然后和用户输入的验证码进行校验,如果不一致,则无法通过校验,如果一致,则后台根据手机号查询用户,如果用户不存在,则为用户创建账号信息,保存到数据库,无论是否存在,都会将用户信息保存到session中,方便后续获得当前登录信息
校验登录状态:
用户在请求时候,会从cookie中携带者JsessionId到后台,后台通过JsessionId从session中拿到用户信息,如果没有session信息,则进行拦截,如果有session信息,则将用户信息保存到threadLocal中,并且放行
1.3 、实现发送短信验证码功能
页面流程
具体代码如下
贴心小提示:
具体逻辑上文已经分析,我们仅仅只需要按照提示的逻辑写出代码即可。
- 发送验证码
@Override
public Result sendCode(String phone, HttpSession session) {
// 1.校验手机号
if (RegexUtils.isPhoneInvalid(phone)) {
// 2.如果不符合,返回错误信息
return Result.fail("手机号格式错误!");
}
// 3.符合,生成验证码
String code = RandomUtil.randomNumbers(6);
// 4.保存验证码到 session
session.setAttribute("code",code);
// 5.发送验证码
log.debug("发送短信验证码成功,验证码:{}", code);
// 返回ok
return Result.ok();
}
- 登录
@Override
public Result login(LoginFormDTO loginForm, HttpSession session) {
// 1.校验手机号
String phone = loginForm.getPhone();
if (RegexUtils.isPhoneInvalid(phone)) {
// 2.如果不符合,返回错误信息
return Result.fail("手机号格式错误!");
}
// 3.校验验证码
Object cacheCode = session.getAttribute("code");
String code = loginForm.getCode();
if(cacheCode == null || !cacheCode.toString().equals(code)){
//3.不一致,报错
return Result.fail("验证码错误");
}
//一致,根据手机号查询用户
User user = query().eq("phone", phone).one();
//5.判断用户是否存在
if(user == null){
//不存在,则创建
user = createUserWithPhone(phone);
}
//7.保存用户信息到session中
session.setAttribute("user",user);
return Result.ok();
}
1.4、实现登录拦截功能
温馨小贴士:tomcat的运行原理
当用户发起请求时,会访问我们像tomcat注册的端口,任何程序想要运行,都需要有一个线程对当前端口号进行监听,tomcat也不例外,当监听线程知道用户想要和tomcat连接连接时,那会由监听线程创建socket连接,socket都是成对出现的,用户通过socket像互相传递数据,当tomcat端的socket接受到数据后,此时监听线程会从tomcat的线程池中取出一个线程执行用户请求,在我们的服务部署到tomcat后,线程会找到用户想要访问的工程,然后用这个线程转发到工程中的controller,service,dao中,并且访问对应的DB,在用户执行完请求后,再统一返回,再找到tomcat端的socket,再将数据写回到用户端的socket,完成请求和响应
通过以上讲解,我们可以得知 每个用户其实对应都是去找tomcat线程池中的一个线程来完成工作的, 使用完成后再进行回收,既然每个请求都是独立的,所以在每个用户去访问我们的工程时,我们可以使用threadlocal来做到线程隔离,每个线程操作自己的一份数据
温馨小贴士:关于threadlocal
如果小伙伴们看过threadLocal的源码,你会发现在threadLocal中,无论是他的put方法和他的get方法, 都是先从获得当前用户的线程,然后从线程中取出线程的成员变量map,只要线程不一样,map就不一样,所以可以通过这种方式来做到线程隔离
拦截器代码
public class LoginInterceptor implements HandlerInterceptor {
@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
//1.获取session
HttpSession session = request.getSession();
//2.获取session中的用户
Object user = session.getAttribute("user");
//3.判断用户是否存在
if(user == null){
//4.不存在,拦截,返回401状态码
response.setStatus(401);
return false;
}
//5.存在,保存用户信息到Threadlocal
UserHolder.saveUser((User)user);
//6.放行
return true;
}
}
让拦截器生效
@Configuration
public class MvcConfig implements WebMvcConfigurer {
@Resource
private StringRedisTemplate stringRedisTemplate;
@Override
public void addInterceptors(InterceptorRegistry registry) {
// 登录拦截器
registry.addInterceptor(new LoginInterceptor())
.excludePathPatterns(
"/shop/**",
"/voucher/**",
"/shop-type/**",
"/upload/**",
"/blog/hot",
"/user/code",
"/user/login"
).order(1);
// token刷新的拦截器
registry.addInterceptor(new RefreshTokenInterceptor(stringRedisTemplate)).addPathPatterns("/**").order(0);
}
}
1.5、隐藏用户敏感信息
我们通过浏览器观察到此时用户的全部信息都在,这样极为不靠谱,所以我们应当在返回用户信息之前,将用户的敏感信息进行隐藏,采用的核心思路就是书写一个UserDto对象,这个UserDto对象就没有敏感信息了,我们在返回前,将有用户敏感信息的User对象转化成没有敏感信息的UserDto对象,那么就能够避免这个尴尬的问题了
在登录方法处修改
//7.保存用户信息到session中
session.setAttribute("user", BeanUtils.copyProperties(user,UserDTO.class));
在拦截器处:
//5.存在,保存用户信息到Threadlocal
UserHolder.saveUser((UserDTO) user);
在UserHolder处:将user对象换成UserDTO
public class UserHolder {
private static final ThreadLocal<UserDTO> tl = new ThreadLocal<>();
public static void saveUser(UserDTO user){
tl.set(user);
}
public static UserDTO getUser(){
return tl.get();
}
public static void removeUser(){
tl.remove();
}
}
1.6、session共享问题
核心思路分析:
每个tomcat中都有一份属于自己的session,假设用户第一次访问第一台tomcat,并且把自己的信息存放到第一台服务器的session中,但是第二次这个用户访问到了第二台tomcat,那么在第二台服务器上,肯定没有第一台服务器存放的session,所以此时 整个登录拦截功能就会出现问题,我们能如何解决这个问题呢?早期的方案是session拷贝,就是说虽然每个tomcat上都有不同的session,但是每当任意一台服务器的session修改时,都会同步给其他的Tomcat服务器的session,这样的话,就可以实现session的共享了
但是这种方案具有两个大问题
1、每台服务器中都有完整的一份session数据,服务器压力过大。
2、session拷贝数据时,可能会出现延迟
所以咱们后来采用的方案都是基于redis来完成,我们把session换成redis,redis数据本身就是共享的,就可以避免session共享的问题了
1.7 Redis代替session的业务流程
1.7.1、设计key的结构
首先我们要思考一下利用redis来存储数据,那么到底使用哪种结构呢?由于存入的数据比较简单,我们可以考虑使用String,或者是使用哈希,如下图,如果使用String,同学们注意他的value,用多占用一点空间,如果使用哈希,则他的value中只会存储他数据本身,如果不是特别在意内存,其实使用String就可以啦。
1.7.2、设计key的具体细节
所以我们可以使用String结构,就是一个简单的key,value键值对的方式,但是关于key的处理,session他是每个用户都有自己的session,但是redis的key是共享的,咱们就不能使用code了
在设计这个key的时候,我们之前讲过需要满足两点
1、key要具有唯一性
2、key要方便携带
如果我们采用phone:手机号这个的数据来存储当然是可以的,但是如果把这样的敏感数据存储到redis中并且从页面中带过来毕竟不太合适,所以我们在后台生成一个随机串token,然后让前端带来这个token就能完成我们的整体逻辑了
1.7.3、整体访问流程
当注册完成后,用户去登录会去校验用户提交的手机号和验证码,是否一致,如果一致,则根据手机号查询用户信息,不存在则新建,最后将用户数据保存到redis,并且生成token作为redis的key,当我们校验用户是否登录时,会去携带着token进行访问,从redis中取出token对应的value,判断是否存在这个数据,如果没有则拦截,如果存在则将其保存到threadLocal中,并且放行。
1.8 基于Redis实现短信登录
这里具体逻辑就不分析了,之前咱们已经重点分析过这个逻辑啦。
UserServiceImpl代码
@Override
public Result login(LoginFormDTO loginForm, HttpSession session) {
// 1.校验手机号
String phone = loginForm.getPhone();
if (RegexUtils.isPhoneInvalid(phone)) {
// 2.如果不符合,返回错误信息
return Result.fail("手机号格式错误!");
}
// 3.从redis获取验证码并校验
String cacheCode = stringRedisTemplate.opsForValue().get(LOGIN_CODE_KEY + phone);
String code = loginForm.getCode();
if (cacheCode == null || !cacheCode.equals(code)) {
// 不一致,报错
return Result.fail("验证码错误");
}
// 4.一致,根据手机号查询用户 select * from tb_user where phone = ?
User user = query().eq("phone", phone).one();
// 5.判断用户是否存在
if (user == null) {
// 6.不存在,创建新用户并保存
user = createUserWithPhone(phone);
}
// 7.保存用户信息到 redis中
// 7.1.随机生成token,作为登录令牌
String token = UUID.randomUUID().toString(true);
// 7.2.将User对象转为HashMap存储
UserDTO userDTO = BeanUtil.copyProperties(user, UserDTO.class);
Map<String, Object> userMap = BeanUtil.beanToMap(userDTO, new HashMap<>(),
CopyOptions.create()
.setIgnoreNullValue(true)
.setFieldValueEditor((fieldName, fieldValue) -> fieldValue.toString()));
// 7.3.存储
String tokenKey = LOGIN_USER_KEY + token;
stringRedisTemplate.opsForHash().putAll(tokenKey, userMap);
// 7.4.设置token有效期
stringRedisTemplate.expire(tokenKey, LOGIN_USER_TTL, TimeUnit.MINUTES);
// 8.返回token
return Result.ok(token);
}
1.9 解决状态登录刷新问题
1.9.1 初始方案思路总结:
在这个方案中,他确实可以使用对应路径的拦截,同时刷新登录token令牌的存活时间,但是现在这个拦截器他只是拦截需要被拦截的路径,假设当前用户访问了一些不需要拦截的路径,那么这个拦截器就不会生效,所以此时令牌刷新的动作实际上就不会执行,所以这个方案他是存在问题的
1.9.2 优化方案
既然之前的拦截器无法对不需要拦截的路径生效,那么我们可以添加一个拦截器,在第一个拦截器中拦截所有的路径,把第二个拦截器做的事情放入到第一个拦截器中,同时刷新令牌,因为第一个拦截器有了threadLocal的数据,所以此时第二个拦截器只需要判断拦截器中的user对象是否存在即可,完成整体刷新功能。
1.9.3 代码
RefreshTokenInterceptor
public class RefreshTokenInterceptor implements HandlerInterceptor {
private StringRedisTemplate stringRedisTemplate;
public RefreshTokenInterceptor(StringRedisTemplate stringRedisTemplate) {
this.stringRedisTemplate = stringRedisTemplate;
}
@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
// 1.获取请求头中的token
String token = request.getHeader("authorization");
if (StrUtil.isBlank(token)) {
return true;
}
// 2.基于TOKEN获取redis中的用户
String key = LOGIN_USER_KEY + token;
Map<Object, Object> userMap = stringRedisTemplate.opsForHash().entries(key);
// 3.判断用户是否存在
if (userMap.isEmpty()) {
return true;
}
// 5.将查询到的hash数据转为UserDTO
UserDTO userDTO = BeanUtil.fillBeanWithMap(userMap, new UserDTO(), false);
// 6.存在,保存用户信息到 ThreadLocal
UserHolder.saveUser(userDTO);
// 7.刷新token有效期
stringRedisTemplate.expire(key, LOGIN_USER_TTL, TimeUnit.MINUTES);
// 8.放行
return true;
}
@Override
public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception {
// 移除用户
UserHolder.removeUser();
}
}
LoginInterceptor
public class LoginInterceptor implements HandlerInterceptor {
@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
// 1.判断是否需要拦截(ThreadLocal中是否有用户)
if (UserHolder.getUser() == null) {
// 没有,需要拦截,设置状态码
response.setStatus(401);
// 拦截
return false;
}
// 有用户,则放行
return true;
}
}
2、商户查询缓存
2.1 什么是缓存?
前言:什么是缓存?
就像自行车,越野车的避震器
举个例子:越野车,山地自行车,都拥有"避震器",防止车体加速后因惯性,在酷似"U"字母的地形上飞跃,硬着陆导致的损害,像个弹簧一样;
同样,实际开发中,系统也需要"避震器",防止过高的数据访问猛冲系统,导致其操作线程无法及时处理信息而瘫痪;
这在实际开发中对企业讲,对产品口碑,用户评价都是致命的;所以企业非常重视缓存技术;
缓存(Cache),就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于本地代码(例如:
例1:Static final ConcurrentHashMap<K,V> map = new ConcurrentHashMap<>(); 本地用于高并发
例2:static final Cache<K,V> USER_CACHE = CacheBuilder.newBuilder().build(); 用于redis等缓存
例3:Static final Map<K,V> map = new HashMap(); 本地缓存
由于其被Static修饰,所以随着类的加载而被加载到内存之中,作为本地缓存,由于其又被final修饰,所以其引用(例3:map)和对象(例3:new HashMap())之间的关系是固定的,不能改变,因此不用担心赋值(=)导致缓存失效;
2.1.1 为什么要使用缓存
一句话:因为速度快,好用
缓存数据存储于代码中,而代码运行在内存中,内存的读写性能远高于磁盘,缓存可以大大降低用户访问并发量带来的服务器读写压力
实际开发过程中,企业的数据量,少则几十万,多则几千万,这么大数据量,如果没有缓存来作为"避震器",系统是几乎撑不住的,所以企业会大量运用到缓存技术;
但是缓存也会增加代码复杂度和运营的成本:
2.1.2 如何使用缓存
实际开发中,会构筑多级缓存来使系统运行速度进一步提升,例如:本地缓存与redis中的缓存并发使用
浏览器缓存:主要是存在于浏览器端的缓存
应用层缓存:可以分为tomcat本地缓存,比如之前提到的map,或者是使用redis作为缓存
数据库缓存:在数据库中有一片空间是 buffer pool,增改查数据都会先加载到mysql的缓存中
CPU缓存:当代计算机最大的问题是 cpu性能提升了,但内存读写速度没有跟上,所以为了适应当下的情况,增加了cpu的L1,L2,L3级的缓存
2.2 添加商户缓存
在我们查询商户信息时,我们是直接操作从数据库中去进行查询的,大致逻辑是这样,直接查询数据库那肯定慢咯,所以我们需要增加缓存
@GetMapping("/{id}")
public Result queryShopById(@PathVariable("id") Long id) {
//这里是直接查询数据库
return shopService.queryById(id);
}
2.2.1 、缓存模型和思路
标准的操作方式就是查询数据库之前先查询缓存,如果缓存数据存在,则直接从缓存中返回,如果缓存数据不存在,再查询数据库,然后将数据存入redis。
2.1.2、代码如下
代码思路:如果缓存有,则直接返回,如果缓存不存在,则查询数据库,然后存入redis。
2.3 缓存更新策略
缓存更新是redis为了节约内存而设计出来的一个东西,主要是因为内存数据宝贵,当我们向redis插入太多数据,此时就可能会导致缓存中的数据过多,所以redis会对部分数据进行更新,或者把他叫为淘汰更合适。
内存淘汰:redis自动进行,当redis内存达到咱们设定的max-memery的时候,会自动触发淘汰机制,淘汰掉一些不重要的数据(可以自己设置策略方式)
超时剔除:当我们给redis设置了过期时间ttl之后,redis会将超时的数据进行删除,方便咱们继续使用缓存
主动更新:我们可以手动调用方法把缓存删掉,通常用于解决缓存和数据库不一致问题
2.3.1 、数据库缓存不一致解决方案:
由于我们的缓存的数据源来自于数据库,而数据库的数据是会发生变化的,因此,如果当数据库中数据发生变化,而缓存却没有同步,此时就会有一致性问题存在,其后果是:
用户使用缓存中的过时数据,就会产生类似多线程数据安全问题,从而影响业务,产品口碑等;怎么解决呢?有如下几种方案
Cache Aside Pattern 人工编码方式:缓存调用者在更新完数据库后再去更新缓存,也称之为双写方案
Read/Write Through Pattern : 由系统本身完成,数据库与缓存的问题交由系统本身去处理
Write Behind Caching Pattern :调用者只操作缓存,其他线程去异步处理数据库,实现最终一致
2.3.2 、数据库和缓存不一致采用什么方案
综合考虑使用方案一,但是方案一调用者如何处理呢?这里有几个问题
操作缓存和数据库时有三个问题需要考虑:
如果采用第一个方案,那么假设我们每次操作数据库后,都操作缓存,但是中间如果没有人查询,那么这个更新动作实际上只有最后一次生效,中间的更新动作意义并不大,我们可以把缓存删除,等待再次查询时,将缓存中的数据加载出来
- 删除缓存还是更新缓存?
- 更新缓存:每次更新数据库都更新缓存,无效写操作较多
- 删除缓存:更新数据库时让缓存失效,查询时再更新缓存
- 如何保证缓存与数据库的操作的同时成功或失败?
- 单体系统,将缓存与数据库操作放在一个事务
- 分布式系统,利用TCC等分布式事务方案
应该具体操作缓存还是操作数据库,我们应当是先操作数据库,再删除缓存,原因在于,如果你选择第一种方案,在两个线程并发来访问时,假设线程1先来,他先把缓存删了,此时线程2过来,他查询缓存数据并不存在,此时他写入缓存,当他写入缓存后,线程1再执行更新动作时,实际上写入的就是旧的数据,新的数据被旧数据覆盖了。
- 先操作缓存还是先操作数据库?
- 先删除缓存,再操作数据库
- 先操作数据库,再删除缓存
注意:右边方案也是有可能出现不一致,如右图此时情况,不过这种概率极低,因为查缓存和写缓存非常快,而对数据库操作是比较慢的。 ----添加过期时间就可以解决。
2.4 实现商铺和缓存与数据库双写一致
核心思路如下:
修改ShopController中的业务逻辑,满足下面的需求:
根据id查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间
根据id修改店铺时,先修改数据库,再删除缓存
修改重点代码1:修改ShopServiceImpl的queryById方法
设置redis缓存时添加过期时间
修改重点代码2
代码分析:通过之前的淘汰,我们确定了采用删除策略,来解决双写问题,当我们修改了数据之后,然后把缓存中的数据进行删除,查询时发现缓存中没有数据,则会从mysql中加载最新的数据,从而避免数据库和缓存不一致的问题
2.5 缓存穿透问题的解决思路
缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。
常见的解决方案有两种:
- 缓存空对象
- 优点:实现简单,维护方便
- 缺点:
- 额外的内存消耗
- 可能造成短期的不一致
- 布隆过滤
- 优点:内存占用较少,没有多余key
- 缺点:
- 实现复杂
- 存在误判可能
缓存空对象思路分析:当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,我们也把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了
布隆过滤:布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,
假设布隆过滤器判断这个数据不存在,则直接返回
这种方式优点在于节约内存空间,存在误判,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突
2.6 编码解决商品查询的缓存穿透问题:
核心思路如下:
在原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的
现在的逻辑中:如果这个数据不存在,我们不会返回404 ,还是会把这个数据写入到Redis中,并且将value设置为空,欧当再次发起查询时,我们如果发现命中之后,判断这个value是否是null,如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。
小总结:
缓存穿透产生的原因是什么?
- 用户请求的数据在缓存中和数据库中都不存在,不断发起这样的请求,给数据库带来巨大压力
缓存穿透的解决方案有哪些?
- 缓存null值
- 布隆过滤
- 增强id的复杂度,避免被猜测id规律
- 做好数据的基础格式校验
- 加强用户权限校验
- 做好热点参数的限流
2.7 缓存雪崩问题及解决思路
缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。
解决方案:
- 给不同的Key的TTL添加随机值
- 利用Redis集群提高服务的可用性
- 给缓存业务添加降级限流策略
- 给业务添加多级缓存
2.8 缓存击穿问题及解决思路
缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。
常见的解决方案有两种:
- 互斥锁
- 逻辑过期
逻辑分析:假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大
解决方案一、使用锁来解决:
因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。
假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。
解决方案二、逻辑过期方案
方案分析:我们之所以会出现这个缓存击穿问题,主要原因是在于我们对key设置了过期时间,假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用我们内存了吗,我们可以采用逻辑过期方案。
我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个 线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。
这种方案巧妙在于,异步的构建缓存,缺点在于在构建完缓存之前,返回的都是脏数据。
进行对比
互斥锁方案:由于保证了互斥性,所以数据一致,且实现简单,因为仅仅只需要加一把锁而已,也没其他的事情需要操心,所以没有额外的内存消耗,缺点在于有锁就有死锁问题的发生,且只能串行执行性能肯定受到影响
逻辑过期方案: 线程读取过程中不需要等待,性能好,有一个额外的线程持有锁去进行重构数据,但是在重构数据完成前,其他的线程只能返回之前的数据,且实现起来麻烦
2.9 利用互斥锁解决缓存击穿问题
核心思路:相较于原来从缓存中查询不到数据后直接查询数据库而言,现在的方案是 进行查询之后,如果从缓存没有查询到数据,则进行互斥锁的获取,获取互斥锁后,判断是否获得到了锁,如果没有获得到,则休眠,过一会再进行尝试,直到获取到锁为止,才能进行查询
如果获取到了锁的线程,再去进行查询,查询后将数据写入redis,再释放锁,返回数据,利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿
操作锁的代码:
核心思路就是利用redis的setnx方法来表示获取锁,该方法含义是redis中如果没有这个key,则插入成功,返回1,在stringRedisTemplate中返回true, 如果有这个key则插入失败,则返回0,在stringRedisTemplate返回false,我们可以通过true,或者是false,来表示是否有线程成功插入key,成功插入的key的线程我们认为他就是获得到锁的线程。
private boolean tryLock(String key) {
Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
return BooleanUtil.isTrue(flag);
}
private void unlock(String key) {
stringRedisTemplate.delete(key);
}
操作代码:
public Shop queryWithMutex(Long id) {
String key = CACHE_SHOP_KEY + id;
// 1、从redis中查询商铺缓存
String shopJson = stringRedisTemplate.opsForValue().get("key");
// 2、判断是否存在
if (StrUtil.isNotBlank(shopJson)) {
// 存在,直接返回
return JSONUtil.toBean(shopJson, Shop.class);
}
//判断命中的值是否是空值
if (shopJson != null) {
//返回一个错误信息
return null;
}
// 4.实现缓存重构
//4.1 获取互斥锁
String lockKey = "lock:shop:" + id;
Shop shop = null;
try {
boolean isLock = tryLock(lockKey);
// 4.2 判断否获取成功
if(!isLock){
//4.3 失败,则休眠重试
Thread.sleep(50);
return queryWithMutex(id);
}
//4.4 成功,根据id查询数据库
shop = getById(id);
// 5.不存在,返回错误
if(shop == null){
//将空值写入redis
stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);
//返回错误信息
return null;
}
//6.写入redis
stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_NULL_TTL,TimeUnit.MINUTES);
}catch (Exception e){
throw new RuntimeException(e);
}
finally {
//7.释放互斥锁
unlock(lockKey);
}
return shop;
}
3.0 、利用逻辑过期解决缓存击穿问题
需求:修改根据id查询商铺的业务,基于逻辑过期方式来解决缓存击穿问题
思路分析:当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。
如果封装数据:因为现在redis中存储的数据的value需要带上过期时间,此时要么你去修改原来的实体类,要么你
步骤一、
新建一个实体类,我们采用第二个方案,这个方案,对原来代码没有侵入性。
@Data
public class RedisData {
private LocalDateTime expireTime;
private Object data;
}
步骤二、
在ShopServiceImpl 新增此方法,利用单元测试进行缓存预热
在测试类中
步骤三:正式代码
ShopServiceImpl
private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire( Long id ) {
String key = CACHE_SHOP_KEY + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isBlank(json)) {
// 3.存在,直接返回
return null;
}
// 4.命中,需要先把json反序列化为对象
RedisData redisData = JSONUtil.toBean(json, RedisData.class);
Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
LocalDateTime expireTime = redisData.getExpireTime();
// 5.判断是否过期
if(expireTime.isAfter(LocalDateTime.now())) {
// 5.1.未过期,直接返回店铺信息
return shop;
}
// 5.2.已过期,需要缓存重建
// 6.缓存重建
// 6.1.获取互斥锁
String lockKey = LOCK_SHOP_KEY + id;
boolean isLock = tryLock(lockKey);
// 6.2.判断是否获取锁成功
if (isLock){
CACHE_REBUILD_EXECUTOR.submit( ()->{
try{
//重建缓存
this.saveShop2Redis(id,20L);
}catch (Exception e){
throw new RuntimeException(e);
}finally {
unlock(lockKey);
}
});
}
// 6.4.返回过期的商铺信息
return shop;
}
3.1、封装Redis工具类
基于StringRedisTemplate封装一个缓存工具类,满足下列需求:
- 方法1:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置TTL过期时间
- 方法2:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置逻辑过期时间,用于处理缓
存击穿问题
- 方法3:根据指定的key查询缓存,并反序列化为指定类型,利用缓存空值的方式解决缓存穿透问题
- 方法4:根据指定的key查询缓存,并反序列化为指定类型,需要利用逻辑过期解决缓存击穿问题
将逻辑进行封装
@Slf4j
@Component
public class CacheClient {
private final StringRedisTemplate stringRedisTemplate;
private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public CacheClient(StringRedisTemplate stringRedisTemplate) {
this.stringRedisTemplate = stringRedisTemplate;
}
public void set(String key, Object value, Long time, TimeUnit unit) {
stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value), time, unit);
}
public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit) {
// 设置逻辑过期
RedisData redisData = new RedisData();
redisData.setData(value);
redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));
// 写入Redis
stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));
}
public <R,ID> R queryWithPassThrough(
String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){
String key = keyPrefix + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isNotBlank(json)) {
// 3.存在,直接返回
return JSONUtil.toBean(json, type);
}
// 判断命中的是否是空值
if (json != null) {
// 返回一个错误信息
return null;
}
// 4.不存在,根据id查询数据库
R r = dbFallback.apply(id);
// 5.不存在,返回错误
if (r == null) {
// 将空值写入redis
stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
// 返回错误信息
return null;
}
// 6.存在,写入redis
this.set(key, r, time, unit);
return r;
}
public <R, ID> R queryWithLogicalExpire(
String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
String key = keyPrefix + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isBlank(json)) {
// 3.存在,直接返回
return null;
}
// 4.命中,需要先把json反序列化为对象
RedisData redisData = JSONUtil.toBean(json, RedisData.class);
R r = JSONUtil.toBean((JSONObject) redisData.getData(), type);
LocalDateTime expireTime = redisData.getExpireTime();
// 5.判断是否过期
if(expireTime.isAfter(LocalDateTime.now())) {
// 5.1.未过期,直接返回店铺信息
return r;
}
// 5.2.已过期,需要缓存重建
// 6.缓存重建
// 6.1.获取互斥锁
String lockKey = LOCK_SHOP_KEY + id;
boolean isLock = tryLock(lockKey);
// 6.2.判断是否获取锁成功
if (isLock){
// 6.3.成功,开启独立线程,实现缓存重建
CACHE_REBUILD_EXECUTOR.submit(() -> {
try {
// 查询数据库
R newR = dbFallback.apply(id);
// 重建缓存
this.setWithLogicalExpire(key, newR, time, unit);
} catch (Exception e) {
throw new RuntimeException(e);
}finally {
// 释放锁
unlock(lockKey);
}
});
}
// 6.4.返回过期的商铺信息
return r;
}
public <R, ID> R queryWithMutex(
String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
String key = keyPrefix + id;
// 1.从redis查询商铺缓存
String shopJson = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isNotBlank(shopJson)) {
// 3.存在,直接返回
return JSONUtil.toBean(shopJson, type);
}
// 判断命中的是否是空值
if (shopJson != null) {
// 返回一个错误信息
return null;
}
// 4.实现缓存重建
// 4.1.获取互斥锁
String lockKey = LOCK_SHOP_KEY + id;
R r = null;
try {
boolean isLock = tryLock(lockKey);
// 4.2.判断是否获取成功
if (!isLock) {
// 4.3.获取锁失败,休眠并重试
Thread.sleep(50);
return queryWithMutex(keyPrefix, id, type, dbFallback, time, unit);
}
// 4.4.获取锁成功,根据id查询数据库
r = dbFallback.apply(id);
// 5.不存在,返回错误
if (r == null) {
// 将空值写入redis
stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
// 返回错误信息
return null;
}
// 6.存在,写入redis
this.set(key, r, time, unit);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}finally {
// 7.释放锁
unlock(lockKey);
}
// 8.返回
return r;
}
private boolean tryLock(String key) {
Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
return BooleanUtil.isTrue(flag);
}
private void unlock(String key) {
stringRedisTemplate.delete(key);
}
}
在ShopServiceImpl 中
@Resource
private CacheClient cacheClient;
@Override
public Result queryById(Long id) {
// 解决缓存穿透
Shop shop = cacheClient
.queryWithPassThrough(CACHE_SHOP_KEY, id, Shop.class, this::getById, CACHE_SHOP_TTL, TimeUnit.MINUTES);
// 互斥锁解决缓存击穿
// Shop shop = cacheClient
// .queryWithMutex(CACHE_SHOP_KEY, id, Shop.class, this::getById, CACHE_SHOP_TTL, TimeUnit.MINUTES);
// 逻辑过期解决缓存击穿
// Shop shop = cacheClient
// .queryWithLogicalExpire(CACHE_SHOP_KEY, id, Shop.class, this::getById, 20L, TimeUnit.SECONDS);
if (shop == null) {
return Result.fail("店铺不存在!");
}
// 7.返回
return Result.ok(shop);
}
3、优惠卷秒杀
3.1 -全局唯一ID
每个店铺都可以发布优惠券:
当用户抢购时,就会生成订单并保存到tb_voucher_order这张表中,而订单表如果使用数据库自增ID就存在一些问题:
- id的规律性太明显
- 受单表数据量的限制
场景分析:如果我们的id具有太明显的规则,用户或者说商业对手很容易猜测出来我们的一些敏感信息,比如商城在一天时间内,卖出了多少单,这明显不合适。
场景分析二:随着我们商城规模越来越大,mysql的单表的容量不宜超过500W,数据量过大之后,我们要进行拆库拆表,但拆分表了之后,他们从逻辑上讲他们是同一张表,所以他们的id是不能一样的, 于是乎我们需要保证id的唯一性。
全局ID生成器,是一种在分布式系统下用来生成全局唯一ID的工具,一般要满足下列特性:
为了增加ID的安全性,我们可以不直接使用Redis自增的数值,而是拼接一些其它信息:
ID的组成部分:符号位:1bit,永远为0
时间戳:31bit,以秒为单位,可以使用69年
序列号:32bit,秒内的计数器,支持每秒产生2^32个不同ID
3.2 -Redis实现全局唯一Id
@Component
public class RedisIdWorker {
/**
* 开始时间戳
*/
private static final long BEGIN_TIMESTAMP = 1640995200L;
/**
* 序列号的位数
*/
private static final int COUNT_BITS = 32;
private StringRedisTemplate stringRedisTemplate;
public RedisIdWorker(StringRedisTemplate stringRedisTemplate) {
this.stringRedisTemplate = stringRedisTemplate;
}
public long nextId(String keyPrefix) {
// 1.生成时间戳
LocalDateTime now = LocalDateTime.now();
long nowSecond = now.toEpochSecond(ZoneOffset.UTC);
long timestamp = nowSecond - BEGIN_TIMESTAMP;
// 2.生成序列号
// 2.1.获取当前日期,精确到天
String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
// 2.2.自增长
long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);
// 3.拼接并返回
return timestamp << COUNT_BITS | count;
}
}
测试类
知识小贴士:关于countdownlatch
countdownlatch名为信号枪:主要的作用是同步协调在多线程的等待于唤醒问题
我们如果没有CountDownLatch ,那么由于程序是异步的,当异步程序没有执行完时,主线程就已经执行完了,然后我们期望的是分线程全部走完之后,主线程再走,所以我们此时需要使用到CountDownLatch
CountDownLatch 中有两个最重要的方法
1、countDown
2、await
await 方法 是阻塞方法,我们担心分线程没有执行完时,main线程就先执行,所以使用await可以让main线程阻塞,那么什么时候main线程不再阻塞呢?当CountDownLatch 内部维护的 变量变为0时,就不再阻塞,直接放行,那么什么时候CountDownLatch 维护的变量变为0 呢,我们只需要调用一次countDown ,内部变量就减少1,我们让分线程和变量绑定, 执行完一个分线程就减少一个变量,当分线程全部走完,CountDownLatch 维护的变量就是0,此时await就不再阻塞,统计出来的时间也就是所有分线程执行完后的时间。
@Test
void testIdWorker() throws InterruptedException {
CountDownLatch latch = new CountDownLatch(300);
Runnable task = () -> {
for (int i = 0; i < 100; i++) {
long id = redisIdWorker.nextId("order");
System.out.println("id = " + id);
}
latch.countDown();
};
long begin = System.currentTimeMillis();
for (int i = 0; i < 300; i++) {
es.submit(task);
}
latch.await();
long end = System.currentTimeMillis();
System.out.println("time = " + (end - begin));
}
3.3 添加优惠卷
每个店铺都可以发布优惠券,分为平价券和特价券。平价券可以任意购买,而特价券需要秒杀抢购:
tb_voucher:优惠券的基本信息,优惠金额、使用规则等 tb_seckill_voucher:优惠券的库存、开始抢购时间,结束抢购时间。特价优惠券才需要填写这些信息
平价卷由于优惠力度并不是很大,所以是可以任意领取
而代金券由于优惠力度大,所以像第二种卷,就得限制数量,从表结构上也能看出,特价卷除了具有优惠卷的基本信息以外,还具有库存,抢购时间,结束时间等等字段
新增普通卷代码:
VoucherController
@PostMapping
public Result addVoucher(@RequestBody Voucher voucher) {
voucherService.save(voucher);
return Result.ok(voucher.getId());
}
新增秒杀卷代码:
VoucherController
@PostMapping("seckill")
public Result addSeckillVoucher(@RequestBody Voucher voucher) {
voucherService.addSeckillVoucher(voucher);
return Result.ok(voucher.getId());
}
VoucherServiceImpl
@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
// 保存优惠券
save(voucher);
// 保存秒杀信息
SeckillVoucher seckillVoucher = new SeckillVoucher();
seckillVoucher.setVoucherId(voucher.getId());
seckillVoucher.setStock(voucher.getStock());
seckillVoucher.setBeginTime(voucher.getBeginTime());
seckillVoucher.setEndTime(voucher.getEndTime());
seckillVoucherService.save(seckillVoucher);
// 保存秒杀库存到Redis中
stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}
3.4 实现秒杀下单
下单核心思路:当我们点击抢购时,会触发右侧的请求,我们只需要编写对应的controller即可
秒杀下单应该思考的内容:
下单时需要判断两点:
- 秒杀是否开始或结束,如果尚未开始或已经结束则无法下单
- 库存是否充足,不足则无法下单
下单核心逻辑分析:
当用户开始进行下单,我们应当去查询优惠卷信息,查询到优惠卷信息,判断是否满足秒杀条件
比如时间是否充足,如果时间充足,则进一步判断库存是否足够,如果两者都满足,则扣减库存,创建订单,然后返回订单id,如果有一个条件不满足则直接结束。
VoucherOrderServiceImpl
@Override
public Result seckillVoucher(Long voucherId) {
// 1.查询优惠券
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
// 2.判断秒杀是否开始
if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀尚未开始!");
}
// 3.判断秒杀是否已经结束
if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀已经结束!");
}
// 4.判断库存是否充足
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
//5,扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update();
if (!success) {
//扣减库存
return Result.fail("库存不足!");
}
//6.创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 6.1.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 6.2.用户id
Long userId = UserHolder.getUser().getId();
voucherOrder.setUserId(userId);
// 6.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
return Result.ok(orderId);
}
3.5 库存超卖问题分析
有关超卖问题分析:在我们原有代码中是这么写的
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
//5,扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update();
if (!success) {
//扣减库存
return Result.fail("库存不足!");
}
假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,那么这两个线程都会去扣减库存,最终多个线程相当于一起去扣减库存,此时就会出现库存的超卖问题。
超卖问题是典型的多线程安全问题,针对这一问题的常见解决方案就是加锁:而对于加锁,我们通常有两种解决方案:见下图:
悲观锁:
悲观锁可以实现对于数据的串行化执行,比如syn,和lock都是悲观锁的代表,同时,悲观锁中又可以再细分为公平锁,非公平锁,可重入锁,等等
乐观锁:
乐观锁:会有一个版本号,每次操作数据会对版本号+1,再提交回数据时,会去校验是否比之前的版本大1 ,如果大1 ,则进行操作成功,这套机制的核心逻辑在于,如果在操作过程中,版本号只比原来大1 ,那么就意味着操作过程中没有人对他进行过修改,他的操作就是安全的,如果不大1,则数据被修改过,当然乐观锁还有一些变种的处理方式比如cas
乐观锁的典型代表:就是cas,利用cas进行无锁化机制加锁,var5 是操作前读取的内存值,while中的var1+var2 是预估值,如果预估值 == 内存值,则代表中间没有被人修改过,此时就将新值去替换 内存值
其中do while 是为了在操作失败时,再次进行自旋操作,即把之前的逻辑再操作一次。
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
return var5;
课程中的使用方式:
课程中的使用方式是没有像cas一样带自旋的操作,也没有对version的版本号+1 ,他的操作逻辑是在操作时,对版本号进行+1 操作,然后要求version 如果是1 的情况下,才能操作,那么第一个线程在操作后,数据库中的version变成了2,但是他自己满足version=1 ,所以没有问题,此时线程2执行,线程2 最后也需要加上条件version =1 ,但是现在由于线程1已经操作过了,所以线程2,操作时就不满足version=1 的条件了,所以线程2无法执行成功
3.6 乐观锁解决超卖问题
修改代码方案一、
VoucherOrderServiceImpl 在扣减库存时,改为:
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1") //set stock = stock -1
.eq("voucher_id", voucherId).eq("stock",voucher.getStock()).update(); //where id = ? and stock = ?
以上逻辑的核心含义是:只要我扣减库存时的库存和之前我查询到的库存是一样的,就意味着没有人在中间修改过库存,那么此时就是安全的,但是以上这种方式通过测试发现会有很多失败的情况,失败的原因在于:在使用乐观锁过程中假设100个线程同时都拿到了100的库存,然后大家一起去进行扣减,但是100个人中只有1个人能扣减成功,其他的人在处理时,他们在扣减时,库存已经被修改过了,所以此时其他线程都会失败
修改代码方案二、
之前的方式要修改前后都保持一致,但是这样我们分析过,成功的概率太低,所以我们的乐观锁需要变一下,改成stock大于0 即可
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update().gt("stock",0); //where id = ? and stock > 0
知识小扩展:
针对cas中的自旋压力过大,我们可以使用Longaddr这个类去解决
Java8 提供的一个对AtomicLong改进后的一个类,LongAdder
大量线程并发更新一个原子性的时候,天然的问题就是自旋,会导致并发性问题,当然这也比我们直接使用syn来的好
所以利用这么一个类,LongAdder来进行优化
如果获取某个值,则会对cell和base的值进行递增,最后返回一个完整的值
3.6 优惠券秒杀-一人一单
需求:修改秒杀业务,要求同一个优惠券,一个用户只能下一单
现在的问题在于:
优惠卷是为了引流,但是目前的情况是,一个人可以无限制的抢这个优惠卷,所以我们应当增加一层逻辑,让一个用户只能下一个单,而不是让一个用户下多个单
具体操作逻辑如下:比如时间是否充足,如果时间充足,则进一步判断库存是否足够,然后再根据优惠卷id和用户id查询是否已经下过这个订单,如果下过这个订单,则不再下单,否则进行下单
VoucherOrderServiceImpl
初步代码:增加一人一单逻辑
@Override
public Result seckillVoucher(Long voucherId) {
// 1.查询优惠券
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
// 2.判断秒杀是否开始
if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀尚未开始!");
}
// 3.判断秒杀是否已经结束
if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀已经结束!");
}
// 4.判断库存是否充足
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
// 5.一人一单逻辑
// 5.1.用户id
Long userId = UserHolder.getUser().getId();
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
}
//6,扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update();
if (!success) {
//扣减库存
return Result.fail("库存不足!");
}
//7.创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 7.1.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
voucherOrder.setUserId(userId);
// 7.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
return Result.ok(orderId);
}
存在问题:现在的问题还是和之前一样,并发过来,查询数据库,都不存在订单,所以我们还是需要加锁,但是乐观锁比较适合更新数据,而现在是插入数据,所以我们需要使用悲观锁操作
注意:在这里提到了非常多的问题,我们需要慢慢的来思考,首先我们的初始方案是封装了一个createVoucherOrder方法,同时为了确保他线程安全,在方法上添加了一把synchronized 锁
@Transactional
public synchronized Result createVoucherOrder(Long voucherId) {
Long userId = UserHolder.getUser().getId();
// 5.1.查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
}
// 6.扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1") // set stock = stock - 1
.eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
.update();
if (!success) {
// 扣减失败
return Result.fail("库存不足!");
}
// 7.创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 7.1.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 7.2.用户id
voucherOrder.setUserId(userId);
// 7.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
// 7.返回订单id
return Result.ok(orderId);
}
,但是这样添加锁,锁的粒度太粗了,在使用锁过程中,控制锁粒度 是一个非常重要的事情,因为如果锁的粒度太大,会导致每个线程进来都会锁住,所以我们需要去控制锁的粒度,以下这段代码需要修改为: intern() 这个方法是从常量池中拿到数据,如果我们直接使用userId.toString() 他拿到的对象实际上是不同的对象,new出来的对象,我们使用锁必须保证锁必须是同一把,所以我们需要使用intern()方法
@Transactional
public Result createVoucherOrder(Long voucherId) {
Long userId = UserHolder.getUser().getId();
synchronized(userId.toString().intern()){
// 5.1.查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
}
// 6.扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1") // set stock = stock - 1
.eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
.update();
if (!success) {
// 扣减失败
return Result.fail("库存不足!");
}
// 7.创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 7.1.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 7.2.用户id
voucherOrder.setUserId(userId);
// 7.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
// 7.返回订单id
return Result.ok(orderId);
}
}
但是以上代码还是存在问题,问题的原因在于当前方法被spring的事务控制,如果你在方法内部加锁,可能会导致当前方法事务还没有提交,但是锁已经释放也会导致问题,所以我们选择将当前方法整体包裹起来,确保事务不会出现问题:如下:
在seckillVoucher 方法中,添加以下逻辑,这样就能保证事务的特性,同时也控制了锁的粒度
但是以上做法依然有问题,因为你调用的方法,其实是this.的方式调用的,事务想要生效,还得利用代理来生效,所以这个地方,我们需要获得原始的事务对象, 来操作事务
3.7 集群环境下的并发问题
通过加锁可以解决在单机情况下的一人一单安全问题,但是在集群模式下就不行了。
1、我们将服务启动两份,端口分别为8081和8082:
2、然后修改nginx的conf目录下的nginx.conf文件,配置反向代理和负载:
具体操作(略)
有关锁失效原因分析
由于现在我们部署了多个tomcat,每个tomcat都有一个属于自己的jvm,那么假设在服务器A的tomcat内部,有两个线程,这两个线程由于使用的是同一份代码,那么他们的锁对象是同一个,是可以实现互斥的,但是如果现在是服务器B的tomcat内部,又有两个线程,但是他们的锁对象写的虽然和服务器A一样,但是锁对象却不是同一个,所以线程3和线程4可以实现互斥,但是却无法和线程1和线程2实现互斥,这就是 集群环境下,syn锁失效的原因,在这种情况下,我们就需要使用分布式锁来解决这个问题。