出处:https://www.cnblogs.com/flipped/p/5716603.html
fixPostBody(); setTimeout(function () { incrementViewCount(cb_entryId); }, 50); deliverAdT2(); deliverAdC1(); deliverAdC2(); loadNewsAndKb(); loadBlogSignature(); LoadPostInfoBlock(cb_blogId, cb_entryId, cb_blogApp, cb_blogUserGuid); GetPrevNextPost(cb_entryId, cb_blogId, cb_entryCreatedDate, cb_postType); loadOptUnderPost(); GetHistoryToday(cb_blogId, cb_blogApp, cb_entryCreatedDate);
1.gcd
int gcd(int a,int b){ return b?gcd(b,a%b):a; }
2.扩展gcd )extend great common divisor
ll exgcd(ll l,ll r,ll &x,ll &y) { if(r==0){x=1;y=0;return l;} else { ll d=exgcd(r,l%r,y,x); y-=l/r*x; return d; } }
3.求a关于m的乘法逆元
ll mod_inverse(ll a,ll m){ ll x,y; if(exgcd(a,m,x,y)==1)//ax+my=1 return (x%m+m)%m; return -1;//不存在 }
补充:求逆元还可以用
ans=abmodm=(amod(m⋅b))/b
a
n
s
=
a
b
mod
m
=
(
a
mod
(
m
⋅
b
)
)
/
b
4.快速幂quick power
ll qpow(ll a,ll b,ll m){ ll ans=1; ll k=a; while(b){ if(b&1)ans=ans*k%m; k=k*k%m; b>>=1; } return ans; }
5.快速乘,直接乘会爆ll时需要它,也叫二分乘法。
ll qmul(ll a,ll b,ll m){ ll ans=0; ll k=a; ll f=1;//f是用来存负号的 if(k<0){f=-1;k=-k;} if(b<0){f*=-1;b=-b;} while(b){ if(b&1) ans=(ans+k)%m; k=(k+k)%m; b>>=1; } return ans*f; }
6.中国剩余定理CRT (x=ai mod mi)
ll china(ll n, ll *a,ll *m) { ll M=1,y,x=0,d; for(ll i = 1; i <= n; i++) M *= m[i]; for(ll i = 1; i <= n; i++) { ll w = M /m[i]; exgcd(m[i], w, d, y);//m[i]*d+w*y=1 x = (x + y*w*a[i]) % M; } return (x+M)%M; }
7.筛素数,全局:int cnt,prime[N],p[N];
void isprime() { cnt = 0; memset(prime,true,sizeof(prime)); for(int i=2; i<N; i++) { if(prime[i]) { p[cnt++] = i; for(int j=i+i; j<N; j+=i) prime[j] = false; } } }
8.快速计算逆元
补充:>>关于快速算逆元的递推式的证明<<
void inverse(){ inv[1] = 1; for(int i=2;i<N;i++) { if(i >= M) break; inv[i] = (M-M/i)*inv[M%i]%M; } }
9.组合数取模
n和m 10^5时,预处理出逆元和阶乘
ll fac[N]={1,1},inv[N]={1,1},f[N]={1,1}; ll C(ll a,ll b){ if(b>a)return 0; return fac[a]*inv[b]%M*inv[a-b]%M; } void init(){//快速计算阶乘的逆元 for(int i=2;i<N;i++){ fac[i]=fac[i-1]*i%M; f[i]=(M-M/i)*f[M%i]%M; inv[i]=inv[i-1]*f[i]%M; } }
n较大10^9,但是m较小10^5时,
ll C(ll n,ll m){ if(m>n)return 0; ll ans=1; for(int i=1;i<=m;i++) ans=ans*(n-i+1)%M*qpow(i,M-2,M)%M; return ans; }
n和m特别大10^18时但是p较小10^5时用lucas
10.Lucas大组合取模
#define N 100005 #define M 100007 ll n,m,fac[N]={1}; ll C(ll n,ll m){ if(m>n)return 0; return fac[n]*qpow(fac[m],M-2,M)%M*qpow(fac[n-m],M-2,M)%M;//费马小定理求逆元 } ll lucas(ll n,ll m){ if(!m)return 1; return(C(n%M,m%M)*lucas(n/M,m/M))%M; } void init(){ for(int i=1;i<=M;i++) fac[i]=fac[i-1]*i%M; }
to be continued…
</div>
<div class = "postDesc">posted @ <span id="post-date">2016-07-29 02:18</span> <a href='https://www.cnblogs.com/flipped/'>水郁</a> 阅读(<span id="post_view_count">...</span>) 评论(<span id="post_comment_count">...</span>) <a href ="https://i.cnblogs.com/EditPosts.aspx?postid=5716603" rel="nofollow">编辑</a> <a href="#" onclick="AddToWz(5716603);return false;">收藏</a></div>
</div>
<script type="text/javascript">var allowComments=true,cb_blogId=255309,cb_entryId=5716603,cb_blogApp=currentBlogApp,cb_blogUserGuid='4dd98a05-9991-e511-9fc1-ac853d9f53cc',cb_entryCreatedDate='2016/7/29 2:18:00';loadViewCount(cb_entryId);var cb_postType=1;</script>