朴素贝叶斯
优点:在数据较少的情况下仍然有效,可以处理多类别问题;
缺点:对于输入数据的准备方式较为敏感;
使用数据类型:标称型数据。
朴素贝叶斯核心思想是选择具有最高概率的决策。
# -*- coding:utf-8 -*- #使用Python进行文本分类 """ 从文本中构建词向量,将句子转换为向量 """ from numpy import * def loadDataSet(): """ 创建一些样本,返回的第一个变量是进行词条切分后的文档集合;第二个变量是一个类别标签的集合 :return: """ postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0,1,0,1,0,1] #1表示侮辱性文字,0表示正常言论 return postingList,classVec def createVocabList(dataSet): """ 创建一个包含所有文档中出现的不重复词的列表 :param dataSet: :return: """ vocabSet = set([]) #创建一个空集 for document in dataSet: vocabSet = vocabSet|set(document) #创建两个集合的并集 return list(vocabSet) def setOfWords2Vec(vocabList,inputSet): """ :param vocabList: :param inputSet: 某个文档 :return: """ returnVec = [0]*len(vocabList) #创建一个其中所有元素都为0的向量 for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)]=1 else: print "the word :%s is not in my vocabulary" % word return returnVec listOPosts,listClasses = loadDataSet() my = createVocabList(listOPosts) # print my print setOfWords2Vec(my,listOPosts[3])
#训练方法,从词向量计算概率 """ p(ci|w)=p(w|ci)*p(ci)/p(w) 对每个类进行计算概率,比较这两个概率值的大小 """ def trainNB0(trainMatrix,trainCategory): numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCategory)/float(numTrainDocs) p0Num = zeros(numWords);p1Num = zeros(numWords) p0Denom = 0.0;p1Denom = 0.0 for i in range(numTrainDocs): p1Num+=trainMatrix[i]#向量相加 p1Denom+=sum(trainMatrix[i]) else: p0Num += trainMatrix[i] p0Denom +=sum(trainMatrix[i]) p1Vect = p1Num/p1Denom p0Vect = p0Num/p0Denom return p0Vect,p1Vect,pAbusive trainMat=[] for post in listOPosts: trainMat.append(setOfWords2Vec(my,post)) p0,p1,pa = trainNB0(trainMat,listClasses) print pa先写这么多,慢慢补