In the neural network terminology:
- one epoch = one forward pass and one backward pass of all the training examples
- batch size = the number of training examples in one forward/backward pass. The higher the batch size, the more memory space you'll need.
- number of iterations = number of passes, each pass using [batch size] number of examples. To be clear, one pass = one forward pass + one backward pass (we do not count the forward pass and backward pass as two different passes).
Example: if you have 1000 training examples, and your batch size is 500, then it will take 2 iterations to complete 1 epoch.
FYI: Tradeoff batch size vs. number of iterations to train a neural network
The term "batch" is ambiguous: some people use it to designate the entire training set, and some people use it to refer to the number of training examples in one forward/backward pass (as I did in this answer). To avoid that ambiguity and make clear that batch corresponds to the number of training examples in one forward/backward pass, one can use the term mini-batch.
本文解释了神经网络训练过程中的关键术语,包括epoch、批次大小和迭代次数等,并讨论了它们之间的关系及其对内存需求的影响。
1万+

被折叠的 条评论
为什么被折叠?



