SkipList 跳表

为什么选择跳表

目前经常使用的平衡数据结构有:B树,红黑树,AVL树,Splay Tree等。

 

想象一下,给你一张草稿纸,一只笔,一个编辑器,你能立即实现一颗红黑树,或者AVL树

出来吗? 很难吧,这需要时间,要考虑很多细节,要参考一堆算法与数据结构之类的书,

还要参考网上的代码,相当麻烦。

 

用跳表吧,跳表是一种随机化的数据结构,目前开源软件 Redis 和 LevelDB 都有用到它,

它的效率和红黑树以及 AVL 树不相上下,但跳表的原理相当简单,只要你能熟练操作链表,

就能轻松实现一个 SkipList。

 

有序表的搜索

考虑一个有序表:


 

从该有序表中搜索元素 < 23, 43, 59 > ,需要比较的次数分别为 < 2, 4, 6 >,总共比较的次数

为 2 + 4 + 6 = 12 次。有没有优化的算法吗?  链表是有序的,但不能使用二分查找。类似二叉

搜索树,我们把一些节点提取出来,作为索引。得到如下结构:



 这里我们把 < 14, 34, 50, 72 > 提取出来作为一级索引,这样搜索的时候就可以减少比较次数了。

 我们还可以再从一级索引提取一些元素出来,作为二级索引,变成如下结构:

 

  

 

     这里元素不多,体现不出优势,如果元素足够多,这种索引结构就能体现出优势来了。

 

跳表

下面的结构是就是跳表:

 其中 -1 表示 INT_MIN, 链表的最小值,1 表示 INT_MAX,链表的最大值。

 

 

跳表具有如下性质:

(1) 由很多层结构组成

(2) 每一层都是一个有序的链表

(3) 最底层(Level 1)的链表包含所有元素

(4) 如果一个元素出现在 Level i 的链表中,则它在 Level i 之下的链表也都会出现。

(5) 每个节点包含两个指针,一个指向同一链表中的下一个元素,一个指向下面一层的元素

 

跳表的搜索


 

例子:查找元素 117

(1) 比较 21, 比 21 大,往后面找

(2) 比较 37,   比 37大,比链表最大值小,从 37 的下面一层开始找

(3) 比较 71,  比 71 大,比链表最大值小,从 71 的下面一层开始找

(4) 比较 85, 比 85 大,从后面找

(5) 比较 117, 等于 117, 找到了节点。

 

具体的搜索算法如下: 

 

C代码  收藏代码
  1. /* 如果存在 x, 返回 x 所在的节点, 
  2.  * 否则返回 x 的后继节点 */  
  3. find(x)   
  4. {  
  5.     p = top;  
  6.     while (1) {  
  7.         while (p->next->key < x)  
  8.             p = p->next;  
  9.         if (p->down == NULL)   
  10.             return p->next;  
  11.         p = p->down;  
  12.     }  
  13. }  
 

 

跳表的插入

先确定该元素要占据的层数 K(采用丢硬币的方式,这完全是随机的)

然后在 Level 1 ... Level K 各个层的链表都插入元素。

例子:插入 119, K = 2


 

如果 K 大于链表的层数,则要添加新的层。

例子:插入 119, K = 4



丢硬币决定 K

插入元素的时候,元素所占有的层数完全是随机的,通过一下随机算法产生:

 

C代码  收藏代码
  1. int random_level()  
  2. {  
  3.     K = 1;  
  4.   
  5.     while (random(0,1))  
  6.         K++;  
  7.   
  8.     return K;  
  9. }  

 

相当与做一次丢硬币的实验,如果遇到正面,继续丢,遇到反面,则停止,

用实验中丢硬币的次数 K 作为元素占有的层数。显然随机变量 K 满足参数为 p = 1/2 的几何分布,

K 的期望值 E[K] = 1/p = 2. 就是说,各个元素的层数,期望值是 2 层。

 

 

跳表的高度。

n 个元素的跳表,每个元素插入的时候都要做一次实验,用来决定元素占据的层数 K,

跳表的高度等于这 n 次实验中产生的最大 K

 

跳表的空间复杂度分析

根据上面的分析,每个元素的期望高度为 2, 一个大小为 n 的跳表,其节点数目的

期望值是 2n。

 

跳表的删除

在各个层中找到包含 x 的节点,使用标准的 delete from list 方法删除该节点。

例子:删除 71


    内容概要:本文针对国内加密货币市场预测研究较少的现状,采用BP神经网络构建了CCi30指数预测模型。研究选取2018年3月1日至2019年3月26日共391天的数据作为样本,通过“试凑法”确定最优隐结点数目,建立三层BP神经网络模型对CCi30指数收盘价进行预测。论文详细介绍了数据预处理、模型构建、训练及评估过程,包括数据归一化、特征工程、模型架构设计(如输入层、隐藏层、输出层)、模型编译与训练、模型评估(如RMSE、MAE计算)以及结果可视化。研究表明,该模型在短期内能较准确地预测指数变化趋势。此外,文章还讨论了隐层节点数的优化方法及其对预测性能的影响,并提出了若干改进建议,如引入更多技术指标、优化模型架构、尝试其他时序模型等。 适合人群:对加密货币市场预测感兴趣的研究人员、投资者及具备一定编程基础的数据分析师。 使用场景及目标:①为加密货币市场投资者提供一种新的预测工具和方法;②帮助研究人员理解BP神经网络在时间序列预测中的应用;③为后续研究提供改进方向,如数据增强、模型优化、特征工程等。 其他说明:尽管该模型在短期内表现出良好的预测性能,但仍存在一定局限性,如样本量较小、未考虑外部因素影响等。因此,在实际应用中需谨慎对待模型预测结果,并结合其他分析工具共同决策。
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值