简单的回溯法(递归实现)。
比如对于数组3,2,6,7,target = 7,对数组排序得到[2,3,6,7]
1、第1个数字选取2, 那么接下来就是解决从数组[2,3,6,7]选择数字且target = 7-2 = 5
2、第2个数字选择2,那么接下来就是解决从数组[2,3,6,7]选择数字且target = 5-2 = 3
3、第3个数字选择2,那么接下来就是解决从数组[2,3,6,7]选择数字且target = 3-2 = 1
4、此时target = 1小于数组中的所有数字,失败,回溯,重新选择第3个数字
5、第3个数字选择3,那么接下来就是解决从数组[2,3,6,7]选择数字且target = 3-3 = 0
6、target = 0,找到了一组解,继续回溯寻找其他解。
需要注意的是:如果数组中包含重复元素,我们要忽略(因为每个数字可以选择多次,如果不忽略的话,就会产生重复的结果)。貌似oj的测试集数组中都不包含重复的数字。代码如下:
class Solution {
private:
vector<vector<int> > res;
public:
vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
sort(candidates.begin(), candidates.end());//为了输出结果递增,因此先对数组排序
vector<int> tmpres;
helper(candidates, 0, target, tmpres);
return res;
}
//从数组candidates[index,...]寻找和为target的组合
void helper(vector<int> &candidates, const int index, const int target, vector<int>&tmpres)
{
if(target == 0)
{
res.push_back(tmpres);
return;
}
for(int i = index; i < candidates.size() && target >= candidates[i]; i++) //注意条件target >= candidates[i],假如不满足此条件,则函数会返回。因为,target太小了。
if(i == 0 || candidates[i] != candidates[i-1])//由于每个数可以选取多次,因此数组中重复的数就不要再考虑了
{
tmpres.push_back(candidates[i]);
helper(candidates, i, target - candidates[i], tmpres);
tmpres.pop_back();
}
}
};