本章全篇参考赵世钰老师的教材 Mathmatical-Foundation-of-Reinforcement-Learning Deep Q-learning 章节,请各位结合阅读,本合集只专注于数学概念的代码实现。
DQN 算法
1)使用随机权重 ( w ← 1.0 ) (w←1.0) (w←1.0)初始化目标网络 Q ( s , a , w ) Q(s, a, w) Q(s,a,w)和网络 Q ^ ( s , a , w ) \hat Q(s, a, w) Q^(s,a,w), Q Q Q和 Q ^ \hat Q Q^相同,清空回放缓冲区。
2)以概率ε选择一个随机动作a,否则 a = a r g m a x Q ( s , a , w ) a=argmaxQ(s,a,w) a=argmaxQ(s,a,w)。
3)在模拟器中执行动作a,观察奖励r和下一个状态s’。
4)将转移过程(s, a, r, s’)存储在回放缓冲区中。
5)从回放缓冲区中采样一个随机的小批量转移过程。
6)对于回放缓冲区中的每个转移过程,如果片段在此步结束,则计算目标 y = r y=r y=r,否则计算 y