简单的对二维数据进行线性拟合
环境为CUDA10.1,torch1.7.1+cu101, python3.7
数据生成
做一个一维数据,基本原理是给一个线性函数加点噪声
import numpy as np
import random
import csv
import pandas as pd
import torch
import matplotlib.pyplot as plt
a = torch.rand(100, 1)
data = np.zeros([100, 2], dtype=int)
for i in range(100):
data[i, 0] = i
data[i, 1] = random.uniform(0, 10) + 0.5 * i
print("x = ", data[:, 0])
print("y = ", data[:, 1])
# 将数据存为CSV格式
with open("data_CSV/liner_data.csv", "w", newline="") as f:
csv_writer = csv.writer(f)
csv_writer.writerow(["x", "y"])
for i in range(100):
csv_writer.writerow([data[i, 0], data[i, 1]])
# 读取数据并打印
csv_reader = pd.read_csv("data_CSV/liner_data.csv")
print("csv_reader = ", csv_reader)
plt.figure(figsize=(30, 10))
plt.scatter(data[:, 0], data[:, 1], color='red')
plt.show()
线性拟合
import numpy as np
import csv
import pandas as pd
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from torch.autograd import Variable
# 加载数据
csv_reader = pd.read_csv("data_CSV/liner_data.csv")
# print("csv_reader = ", csv_reader)
X = torch.empty(100, 1)
Y = torch.empty(100, 1)
for i in range(100):
X[i, 0] = torch.tensor(csv_reader["x"][i], dtype=torch.float)
for i in range(100):
Y[i, 0] = torch.tensor(csv_reader["y"][i], dtype=torch.float)
# 定义一个模型
class Liner_model(nn.Module):
def __init__(self):
super(Liner_model, self).__init__()
self.linear = nn.Linear(1, 1)
def forward(self, input_data):
# y = weight * input_data + bias
return self.linear(input_data)
#
#
lm = Liner_model()
# print("lm.parameters() = ", lm.parameters())
# 定义损失函数和梯度下降方法
criterion = nn.MSELoss()
optim = torch.optim.SGD(lm.parameters(), lr=1e-5)
# print("optim = ", optim)
Predict = torch.empty(100, 1)
for epoch in range(100):
predict = lm(Variable(X[epoch]))
Predict[epoch, 0] = torch.tensor(predict, dtype=torch.float)
loss = criterion(predict, Variable(Y[epoch]))
if epoch and epoch % 1 == 0:
print("Loss:{:.3f}".format(loss.item()))
optim.zero_grad()
loss.backward()
optim.step()
lm.eval()
predict = lm(Variable(X))
predict = predict.data.numpy()
# 查看数据
plt.figure(figsize=(30, 10))
fig, ax1 = plt.subplots()
fig.suptitle("Liner sample")
ax1.set_xlabel("x")
ax1.set_ylabel("y")
plt.scatter(X, Y, color='red') # 红色为原始数据
plt.scatter(X, predict, color='blue') # 蓝色为最终预测模型
plt.scatter(X, Predict, color='black') # 黑色为训练过程中模型预测的变化
plt.savefig("data_CSV/liner_train.jpg")
plt.show()
总结
实际操作中,学习率、损失函数、梯度下降法可以更换康康效果。