强化学习入门:价值、回报、策略概念详解

前言

 最近想开一个关于强化学习专栏,因为DeepSeek-R1很火,但本人对于LLM连门都没入。因此,只是记录一些类似的读书笔记,内容不深,大多数只是一些概念的东西,数学公式也不会太多,还望读者多多指教。本次阅读书籍为:马克西姆的《深度强化学习实践》
 限于篇幅原因,请读者首先看下历史文章:
马尔科夫过程
马尔科夫奖励过程
马尔科夫奖励过程二
RL框架Gym简介
Gym实现CartPole随机智能体
交叉熵方法数学推导
强化学习入门:交叉熵方法实现CartPole智能体

1、出发点

 原定本篇博客该介绍bellman方程的,但发现自己对于一些基础概念的计算和理解有点儿模糊,于是本篇先恶补一下目前RL所出现的一些基础概念,并搭配详细的计算公式。

2、示例

在这里插入图片描述
 这里以书中一个例子来说明一些概念,在上图中,每个灰色节点表示状态,每条边上实线圆表示状态转移概率,每个虚线圆则表示状态转移所获得的奖励。
 下面将举个视为片段的例子,在RL中也被称为“状态链”。
片段:家–> 咖啡 --> 计算机 --> 家。
 在引入了片段后,就能解释何为“回报”定义了:
 这里先贴下回报公式,对于一个片段来说,在 t t t时刻的回报定义为:
G t = R t + 1 + γ R t + 2 + . . . = ∑ k = 0 ∞ γ k R t + k + 1 G_t = R_{t+1} + \gamma R_{t+2} +... = \sum_{k=0}^{\infty}\gamma^kR_{t+k+1} Gt=Rt+1+γR

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值