朋友们,想象一下:一个红色小球掉进了一个疯狂旋转的五边形里,像个迷失在旋转木马上的孩子。它会老老实实跟着重力跳舞,还是直接“叛逃”飞出去?今天,我们请来了6位AI“大神”——DeepSeek R1、Grok 3、ChatGPT O1、Claude 3.5 Sonnet、O1 Mini High、Gemini 2.0,让它们用Python实现这个动画。结果呢?有的小球跳起了“自由飞翔”,有的却完美还原了自然界的优雅。到底谁才是真正的“动画大师”?咱们一起来揭晓!
AI大模型写代码,真的能像人类一样考虑物理规律吗?还是说,它们只是“堆代码”的工具?今天,我们的任务是用Python实现一个动画:红色小球在顺时针旋转的五边形中晃动,需符合重力规律。最终,只有Groq 3.0完美实现了效果,小球不仅没飞出去,还优雅地遵循了重力规律。其他模型呢?咱们慢慢看。
实验设计:为什么选这个题目?
为什么选这个题目?因为它既有视觉趣味,又考验AI对物理规律的理解——旋转、碰撞、重力,缺一不可。实验规则如下:
- 题目描述:一个红色小球掉进顺时针旋转的五边形中,小球需在五边形内晃动,遵循重力规律。
- 评判标准:动画是否流畅、小球是否飞出五边形、是否符合物理规律(如重力、碰撞反弹)。
- 开发环境:Python,使用常见库(如Pygame、Matplotlib等)。
6个模型各有特色:DeepSeek R1,像个学霸但有点轴;Grok 3,号称“快准狠”;ChatGPT O1,AI界的“老好人”;Claude 3.5,细腻但有时过于谨慎;O1 Mini High,轻量但野心不小;Gemini 2.0,新星但有点神秘。我们把题目原封不动丢给它们,看它们能交出怎样的答卷。
6个模型的代码与效果:有的“飞天”,有的跳华尔兹
6个模型的代码风格各异,有的像“艺术品”,有的像“草稿纸”。但效果呢?有的小球直接“飞天”,有的却像在跳优雅的华尔兹。只有Grok 3.0完美实现了效果,其他模型各有“槽点”,咱们一一来看。
DeepSeek R1:小球“漂浮”去了
[DeepSeek R1实现效果图:小球在五边形里面游离漂浮,动画不自然]
代码如下:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.patches import Circle
# 初始化参数
polygon_radius = 1.0 # 五边形外接圆半径
rotation_speed = 0.05 # 五边形旋转速度(弧度/帧)
ball_x_freq = 0.5 # 小球X轴运动频率
ball_y_freq = 0.7 # 小球Y轴运动频率
ball_amplitude = 0.3 # 小球运动幅度
update_interval = 50 # 动画更新间隔(毫秒)
# 创建图形和坐标轴
fig, ax = plt.subplots()
ax.set_xlim(-1.5, 1.5)
ax.set_ylim(-1.5, 1.5)
ax.set_aspect('equal')
ax.axis('off') # 隐藏坐标轴
# 初始化五边形
polygon_angle = 0.0
polygon_angles = np.linspace(0, 2*np.pi, 5, endpoint=False)
polygon, = ax.plot([], [], 'b-', lw=2)
# 初始化红色小球
ball = Circle((0, 0), 0.05, color='red')
ax.add_patch(ball)
def init():
"""初始化动画"""
polygon.set_data([], [])
return polygon, ball
def update(frame):
"""动画更新函数"""
global polygon_angle
# 更新五边形旋转角度(顺时针)
polygon_angle += rotation_speed
x = polygon_radius * np.cos(polygon_angles - polygon_angle)
y = polygon_radius * np.sin(polygon_angles - polygon_angle)
# 闭合五边形路径
polygon.set_data(np.append(x, x[0]), np.append(y, y[0]))
# 更新小球位置(Lissajous曲线)
t = frame * 0.1
bx = ball_amplitude * np.sin(ball_x_freq * t)
by = ball_amplitude * np.cos(ball_y_freq * t)
ball.center = (bx, by)
return polygon, ball
# 创建动画
ani = animation.FuncAnimation(
fig,
update,
init_func=init,
interval=update_interval,
blit=True,
save_count=50
)
plt.show()
Grok 3:小球跳起了华尔兹
代码特点:简洁优雅,物理模拟考虑周全,碰撞检测和重力实现完美。
效果描述:小球在五边形内晃动,像个听话的孩子,始终遵循重力规律,动画流畅自然。
Groq 3,你这是请了个物理老师来写代码吗?小球跳得像在跳华尔兹!
[Groq 3实现效果图:小球在五边形内优雅晃动,动画流畅]
代码如下:
import pygame
import math
import random
# 初始化 Pygame
pygame.init()
# 设置窗口大小
width, height = 800, 600
screen = pygame.display.set_mode((width, height))
pygame.display.set_caption("Ball Bouncing in Rotating Pentagon")
# 定义颜色
RED = (255, 0, 0)
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
# 五边形的中心和大小
center_x, center_y = width // 2, height // 2
pentagon_radius = 200
# 计算五边形的初始顶点
def get_pentagon_points(center_x, center_y, radius, angle):
points = []
for i in range(5):
theta = angle + (2 * math.pi * i / 5) # 五边形的角度分布
x = center_x + radius * math.cos(theta)
y = center_y + radius * math.sin(theta)
points.append((x, y))
return points
# 小球的初始位置(确保在五边形内)
ball_x, ball_y = center_x, center_y - 50
ball_radius = 10
# 小球的初始速度和重力
ball_speed_x = random.choice([-3, -2, -1, 1, 2, 3])
ball_speed_y = 0
gravity = 0.2 # 重力加速度
damping = 0.8 # 反弹时的速度衰减
# 五边形的旋转速度(弧度/帧)
rotation_speed = -0.02 # 负值表示顺时针旋转
current_angle = 0
# 判断点是否在五边形内的函数(使用射线法)
def point_in_polygon(px, py, polygon):
n = len(polygon)
inside = False
for i in range(n):
j = (i + 1) % n
if ((polygon[i][1] > py) != (polygon[j][1] > py)) and \
(px < (polygon[j][0] - polygon[i][0]) * (py - polygon[i][1]) /
(polygon[j][1] - polygon[i][1] + 1e-10) + polygon[i][0]):
inside = not inside
return inside
# 计算小球与五边形边界的碰撞
def collide_with_pentagon(ball_x, ball_y, ball_speed_x, ball_speed_y, pentagon_points):
n = len(pentagon_points)
for i in range(n):
j = (i + 1) % n
p1, p2 = pentagon_points[i], pentagon_points[j]
# 计算线段的方向向量
line_dx = p2[0] - p1[0]
line_dy = p2[1] - p1[1]
# 计算小球到线段的距离
line_length = math.sqrt(line_dx**2 + line_dy**2)
if line_length == 0:
continue
# 线段的法线向量
normal_x = -line_dy / line_length
normal_y = line_dx / line_length
# 小球到线段起点的向量
ball_to_p1_x = ball_x - p1[0]
ball_to_p1_y = ball_y - p1[1]
# 点到直线的距离
dist = ball_to_p1_x * normal_x + ball_to_p1_y * normal_y
# 如果小球与线段的距离小于半径,发生碰撞
if abs(dist) < ball_radius:
# 计算小球在边界的投影点
t = ((ball_x - p1[0]) * line_dx + (ball_y - p1[1]) * line_dy) / (line_length**2)
if 0 <= t <= 1: # 确保碰撞点在线段上
# 反弹:速度沿法线方向反转
dot = ball_speed_x * normal_x + ball_speed_y * normal_y
ball_speed_x -= 2 * dot * normal_x
ball_speed_y -= 2 * dot * normal_y
# 施加速度衰减
ball_speed_x *= damping
ball_speed_y *= damping
# 调整小球位置,防止卡入边界
ball_x += normal_x * (ball_radius - dist)
ball_y += normal_y * (ball_radius - dist)
return ball_x, ball_y, ball_speed_x, ball_speed_y
return ball_x, ball_y, ball_speed_x, ball_speed_y
# 游戏主循环
running = True
clock = pygame.time.Clock()
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
# 更新五边形的角度
current_angle += rotation_speed
pentagon_points = get_pentagon_points(center_x, center_y, pentagon_radius, current_angle)
# 应用重力
ball_speed_y += gravity
# 更新小球位置
new_x = ball_x + ball_speed_x
new_y = ball_y + ball_speed_y
# 检查小球是否与五边形边界碰撞
ball_x, ball_y, ball_speed_x, ball_speed_y = collide_with_pentagon(
new_x, new_y, ball_speed_x, ball_speed_y, pentagon_points
)
# 清屏
screen.fill(BLACK)
# 绘制五边形
pygame.draw.polygon(screen, WHITE, pentagon_points, 2)
# 绘制小球
pygame.draw.circle(screen, RED, (int(ball_x), int(ball_y)), ball_radius)
# 更新屏幕
pygame.display.flip()
# 控制帧率
clock.tick(60)
# 退出 Pygame
pygame.quit()
ChatGPT O1:小球学会了“隐身术”
[ChatGPT O1实现效果图:小球贴着顶点一动不动]
代码如下:
import pygame
import math
# 初始化 pygame
pygame.init()
# 设置屏幕尺寸
screen_width = 600
screen_height = 600
screen = pygame.display.set_mode((screen_width, screen_height))
# 设置五边形参数
center_x = screen_width // 2
center_y = screen_height // 2
radius = 200
num_sides = 5
angle = 0
# 设置球的半径
ball_radius = 10
# 设置颜色
background_color = (255, 255, 255) # 白色背景
ball_color = (255, 0, 0) # 红色小球
polygon_color = (0, 0, 0) # 五边形颜色
# 创建游戏时钟
clock = pygame.time.Clock()
# 定义绘制五边形的函数
def draw_polygon():
points = []
for i in range(num_sides):
x = center_x + radius * math.cos(math.radians(i * 360 / num_sides + angle))
y = center_y + radius * math.sin(math.radians(i * 360 / num_sides + angle))
points.append((x, y))
pygame.draw.polygon(screen, polygon_color, points)
# 定义绘制小球的函数
def draw_ball():
# 计算球的位置
ball_x = center_x + radius * math.cos(math.radians(angle))
ball_y = center_y + radius * math.sin(math.radians(angle))
pygame.draw.circle(screen, ball_color, (int(ball_x), int(ball_y)), ball_radius)
# 游戏主循环
running = True
while running:
screen.fill(background_color)
# 事件处理
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
# 绘制旋转五边形
draw_polygon()
# 绘制小球
draw_ball()
# 更新角度,使五边形旋转
angle += 1
# 刷新屏幕
pygame.display.flip()
# 控制帧率
clock.tick(60)
# 退出 pygame
pygame.quit()
Claude 3.5:小球去“太空漫步”了
代码特点:细腻,但物理模拟过于简化。
[Claude 3.5实现效果图:小球开始还是正常的,后来就跳出了五边形]
代码如下:
import pygame
import math
import random
# 初始化Pygame
pygame.init()
# 设置窗口
width = 800
height = 600
screen = pygame.display.set_mode((width, height))
pygame.display.set_caption("旋转五边形与弹跳小球")
# 颜色定义
WHITE = (255, 255, 255)
RED = (255, 0, 0)
BLUE = (0, 0, 255)
# 五边形参数
center = (width // 2, height // 2)
radius = 100
vertices = 5
angle = 0
rotation_speed = 0.02
# 小球参数
ball_radius = 10
ball_pos = [center[0], center[1] - radius//2]
ball_velocity = [random.uniform(-5, 5), random.uniform(-5, 5)]
gravity = 0.5
# 计算五边形顶点
def get_pentagon_points(angle):
points = []
for i in range(vertices):
x = center[0] + radius * math.cos(2 * math.pi * i / vertices + angle)
y = center[1] + radius * math.sin(2 * math.pi * i / vertices + angle)
points.append((x, y))
return points
# 检查小球是否与五边形边界碰撞
def check_collision(ball_pos, pentagon_points):
for i in range(len(pentagon_points)):
p1 = pentagon_points[i]
p2 = pentagon_points[(i + 1) % len(pentagon_points)]
# 计算法向量
normal = (-(p2[1] - p1[1]), p2[0] - p1[0])
length = math.sqrt(normal[0]**2 + normal[1]**2)
normal = (normal[0]/length, normal[1]/length)
# 检查碰撞
v1 = (ball_pos[0] - p1[0], ball_pos[1] - p1[1])
dist = v1[0]*normal[0] + v1[1]*normal[1]
if abs(dist) < ball_radius:
return True, normal
return False, None
# 主游戏循环
running = True
clock = pygame.time.Clock()
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
# 清屏
screen.fill(WHITE)
# 更新五边形旋转角度
angle += rotation_speed
pentagon_points = get_pentagon_points(angle)
# 画五边形
pygame.draw.polygon(screen, BLUE, pentagon_points, 2)
# 更新小球位置
ball_velocity[1] += gravity
ball_pos[0] += ball_velocity[0]
ball_pos[1] += ball_velocity[1]
# 检查碰撞
collision, normal = check_collision(ball_pos, pentagon_points)
if collision:
# 反弹
dot_product = (ball_velocity[0]*normal[0] + ball_velocity[1]*normal[1])
ball_velocity[0] = ball_velocity[0] - 2*dot_product*normal[0]
ball_velocity[1] = ball_velocity[1] - 2*dot_product*normal[1]
# 添加一些能量损失
ball_velocity[0] *= 0.8
ball_velocity[1] *= 0.8
# 画小球
pygame.draw.circle(screen, RED, (int(ball_pos[0]), int(ball_pos[1])), ball_radius)
# 更新显示
pygame.display.flip()
# 控制帧率
clock.tick(60)
pygame.quit()
O1 Mini High:小球去“环球旅行”了
[O1 Mini High实现效果图:小球飞出]
代码如下:
import pygame
import math
import random
# 初始化 Pygame
pygame.init()
# 窗口设置
WIDTH, HEIGHT = 800, 600
screen = pygame.display.set_mode((WIDTH, HEIGHT))
pygame.display.set_caption("红球在旋转五边形内晃动")
clock = pygame.time.Clock()
# 全局中心点(五边形将以此点为中心旋转)
CENTER = (WIDTH // 2, HEIGHT // 2)
# 参数设置
PENTAGON_RADIUS = 200 # 五边形半径
BALL_RADIUS = 10 # 小球半径
def generate_local_pentagon(radius):
"""
生成局部坐标系下正五边形的顶点列表,
顶点按顺时针顺序排列(这里采用先从顶点开始,角度从 -90° 开始)
"""
vertices = []
start_angle = -math.pi / 2 # 从顶点(正上方)开始
for i in range(5):
angle = start_angle + i * 2 * math.pi / 5
x = radius * math.cos(angle)
y = radius * math.sin(angle)
vertices.append((x, y))
return vertices
# 局部坐标系下的正五边形顶点
local_pentagon = generate_local_pentagon(PENTAGON_RADIUS)
def rotate_point(x, y, angle):
"""
将点 (x, y) 绕原点旋转 angle 弧度
"""
cos_a = math.cos(angle)
sin_a = math.sin(angle)
new_x = x * cos_a - y * sin_a
new_y = x * sin_a + y * cos_a
return new_x, new_y
def point_line_distance(px, py, x1, y1, x2, y2):
"""
计算点 (px,py) 到线段 (x1,y1)-(x2,y2) 的距离,并返回最近点坐标
"""
dx = x2 - x1
dy = y2 - y1
if dx == 0 and dy == 0:
return math.hypot(px - x1, py - y1), x1, y1
t = ((px - x1) * dx + (py - y1) * dy) / (dx * dx + dy * dy)
t = max(0, min(1, t))
nearest_x = x1 + t * dx
nearest_y = y1 + t * dy
dist = math.hypot(px - nearest_x, py - nearest_y)
return dist, nearest_x, nearest_y
# 小球在局部坐标系下的初始位置与速度
# 为了让小球看起来“掉进”五边形,这里可以设置初始位置在五边形上部内部
ball_x = 0
ball_y = -PENTAGON_RADIUS / 2
# 初始速度(单位:像素/秒),这里随机取一个初始速率
vx = random.uniform(-150, 150)
vy = random.uniform(-150, 150)
# 五边形的旋转参数(旋转角度和角速度,顺时针旋转)
rotation_angle = 0
rotation_speed = math.radians(30) # 每秒 30度,转换为弧度
running = True
while running:
# dt 为上一次循环经过的秒数
dt = clock.tick(60) / 1000.0
# 处理退出事件
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
# 更新小球在局部坐标系下的位置(不考虑加速度,直接匀速运动)
ball_x += vx * dt
ball_y += vy * dt
# 碰撞检测:检查小球是否碰到五边形的任意一条边
# 在局部坐标系中,五边形是静止的
for i in range(len(local_pentagon)):
x1, y1 = local_pentagon[i]
x2, y2 = local_pentagon[(i + 1) % len(local_pentagon)]
d, nearest_x, nearest_y = point_line_distance(ball_x, ball_y, x1, y1, x2, y2)
if d < BALL_RADIUS:
# 计算从最近点到小球中心的向量(碰撞法向量)
normal_x = ball_x - nearest_x
normal_y = ball_y - nearest_y
mag = math.hypot(normal_x, normal_y)
if mag != 0:
normal_x /= mag
normal_y /= mag
# 计算小球速度在法向量方向上的分量
dot = vx * normal_x + vy * normal_y
# 如果小球正朝着边界外“射出”(分量为正),则反射
if dot > 0:
vx = vx - 2 * dot * normal_x
vy = vy - 2 * dot * normal_y
# 调整小球的位置,使其恰好在边界内
ball_x = nearest_x + BALL_RADIUS * normal_x
ball_y = nearest_y + BALL_RADIUS * normal_y
# 更新五边形的旋转角度(顺时针旋转,即角度减小)
rotation_angle -= rotation_speed * dt
# 绘制背景
screen.fill((255, 255, 255))
# 将局部坐标下的五边形顶点转换到全局坐标:先旋转再平移
global_vertices = []
for vertex in local_pentagon:
rx, ry = rotate_point(vertex[0], vertex[1], rotation_angle)
global_vertices.append((CENTER[0] + rx, CENTER[1] + ry))
# 绘制五边形(线宽 2)
pygame.draw.polygon(screen, (0, 0, 0), global_vertices, 2)
# 将小球的局部坐标转换到全局坐标
bx, by = rotate_point(ball_x, ball_y, rotation_angle)
global_ball_pos = (int(CENTER[0] + bx), int(CENTER[1] + by))
pygame.draw.circle(screen, (255, 0, 0), global_ball_pos, BALL_RADIUS)
pygame.display.flip()
pygame.quit()
Gemini 2.0:小球空中漂浮
[Gemini 2.0实现效果图:小球悬浮在空中,没有正确理解题意]
代码如下:
import pygame
import math
import random
# 初始化 Pygame
pygame.init()
# 屏幕尺寸
width, height = 600, 600
screen = pygame.display.set_mode((width, height))
pygame.display.set_caption("旋转的五边形小球")
# 颜色
black = (0, 0, 0)
red = (255, 0, 0)
white = (255, 255, 255)
# 五边形参数
pentagon_radius = 150 # 五边形半径
pentagon_center = (width // 2, height // 2)
rotation_speed = 0.01 # 旋转速度 (弧度/帧)
rotation_angle = 0 # 当前旋转角度
# 小球参数
ball_radius = 10
ball_x = pentagon_center[0] # 初始位置在中心
ball_y = pentagon_center[1]
ball_speed_x = random.uniform(-2, 2) # 随机初始速度
ball_speed_y = random.uniform(-2, 2)
ball_damping = 0.9 # 碰撞后的阻尼,模拟能量损失
# 计算五边形的顶点坐标
def calculate_pentagon_vertices(radius, center, angle):
vertices = []
for i in range(5):
angle_rad = math.radians(i * 72) + angle
x = center[0] + radius * math.cos(angle_rad)
y = center[1] + radius * math.sin(angle_rad)
vertices.append((int(x), int(y)))
return vertices
# 检测小球是否与五边形边界碰撞
def check_collision(ball_x, ball_y, pentagon_vertices):
for i in range(5):
# 获取边上的两个顶点
x1, y1 = pentagon_vertices[i]
x2, y2 = pentagon_vertices[(i + 1) % 5]
# 计算从顶点到小球位置的向量
dx1 = ball_x - x1
dy1 = ball_y - y1
dx2 = ball_x - x2
dy2 = ball_y - y2
# 计算边的向量
edge_dx = x2 - x1
edge_dy = y2 - y1
# 使用向量点积判断是否碰撞
dot_product1 = dx1 * edge_dx + dy1 * edge_dy
dot_product2 = dx2 * edge_dx + dy2 * edge_dy
# 找到边与垂线的交点
edge_length_sq = edge_dx * edge_dx + edge_dy * edge_dy
if edge_length_sq == 0:
continue # 避免除以0
t = max(0, min(1, (dx1 * edge_dx + dy1 * edge_dy) / edge_length_sq)) # 限制在0-1之间
closest_x = x1 + t * edge_dx
closest_y = y1 + t * edge_dy
# 计算小球与交点的距离
distance = math.sqrt((ball_x - closest_x)**2 + (ball_y - closest_y)**2)
if distance <= ball_radius:
# 发生碰撞,计算反射向量 (简化处理)
# 计算法线向量
normal_x = -edge_dy # 法线向量与边向量垂直
normal_y = edge_dx
# 归一化法线向量
normal_length = math.sqrt(normal_x**2 + normal_y**2)
if normal_length > 0:
normal_x /= normal_length
normal_y /= normal_length
# 计算速度向量在法线方向上的投影
dot_product_speed = ball_speed_x * normal_x + ball_speed_y * normal_y
# 反射速度向量
ball_speed_x -= 2 * dot_product_speed * normal_x
ball_speed_y -= 2 * dot_product_speed * normal_y
ball_speed_x *= ball_damping
ball_speed_y *= ball_damping
return True # 发生碰撞
return False # 未发生碰撞
# 游戏主循环
running = True
clock = pygame.time.Clock()
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
# 更新旋转角度
rotation_angle += rotation_speed
# 计算五边形顶点
pentagon_vertices = calculate_pentagon_vertices(pentagon_radius, pentagon_center, rotation_angle)
# 更新小球位置
ball_x += ball_speed_x
ball_y += ball_speed_y
# 检测小球是否与五边形边界碰撞
check_collision(ball_x, ball_y, pentagon_vertices)
# 清屏
screen.fill(black)
# 绘制五边形
pygame.draw.polygon(screen, white, pentagon_vertices, 2)
# 绘制小球
pygame.draw.circle(screen, red, (int(ball_x), int(ball_y)), ball_radius)
# 更新屏幕
pygame.display.flip()
# 控制帧率
clock.tick(60)
# 退出 Pygame
pygame.quit()
结果对比:只有Grok 3.0完美,其他模型“翻车”
6个模型,5个“翻车”,只有Grok 3.0交出了完美答卷。小球飞出去的、穿墙的、消失的,AI的物理模拟能力真是参差不齐。看来,AI写代码,不光要会“画画”,还得懂“物理”。
Grok 3.0为何胜出?
代码优势:物理模拟细致,碰撞检测和重力实现完美。
技术原因:Grok 3.0可能在训练时更注重逻辑推理和物理规律的理解。
Grok 3.0,你这是偷偷学了牛顿三大定律吧?
深度思考:AI的局限与未来
AI大模型写代码,逻辑能力强,但物理模拟和细节处理仍是短板。未来,AI需要更强的跨领域理解能力,才能真正取代人类程序员。朋友们,下次再让AI写动画代码,记得先问问它:你会牛顿三大定律吗?
结尾:谁是真正的“Python动画大师”?
6个模型,只有Grok 3.0完美还原了小球与五边形的“旋转舞会”。其他模型呢?有的让小球“飞天”,有的让它“隐居”,真是各有各的“槽点”。朋友们,你们觉得AI写代码,最大的挑战是什么?欢迎留言讨论!