今天在作程序时,其中有一步需要作图像的累加处理,用CPU实现速度太慢了,就想着用GPU实现,查阅了相关资料,完成了一个向量内积的处理,其中包含了归约的思想。发上来,希望对学习CUDA有所帮助。代码很容易懂。
// vectorReduce.cpp : 定义控制台应用程序的入口点。
#include <stdio.h>
#include <tchar.h>
#include<stdlib.h>
#include<cuda_runtime.h>
#include<sdkHelper.h>
#include<cutil.h>
#define imin(a,b) (a<b?a:b)
const int N = 1024* 1024;
const int threadsPerBlock = 256;
const int blocksPerGrid = imin( 512, (N+threadsPerBlock-1) / threadsPerBlock );
__global__ void dot( float *a, float *b, float *c )
{
__shared__ float cache[threadsPerBlock];//定义共享存储器,这一步很重要
int tid = threadIdx.x + blockIdx.x * blockDim.x;
int cacheIndex = threadIdx.x;
float temp = 0;
while (tid < N)
{
temp += a[tid] * b[tid];
tid += blockDim.x * gridDim.x;
}
// 设置cach[cachIndex]的值
cache[cacheIndex] = temp;
// 块同步处理
__syncthreads();
// for reductions, threadsPerBlock must be a power of 2
// because of the following code
int i = blockDim.x/2;
while (i != 0)
{
if (cacheIndex < i)
cache[cacheIndex] += cache[cacheIndex + i];
__syncthreads();
i /= 2;
}
if (cacheIndex == 0)
c[blockIdx.x] = cache[0];
}
int main( void )
{
float *a, *b, c, *partial_c;
float *dev_a, *dev_b, *dev_partial_c;
// allocate memory on the CPU side
a = (float*)malloc( N*sizeof(float) );
b = (float*)malloc( N*sizeof(float) );
partial_c = (float*)malloc( blocksPerGrid*sizeof(float) );
// allocate the memory on the GPU
cudaMalloc( (void**)&dev_a,N*sizeof(float) );
cudaMalloc( (void**)&dev_b, N*sizeof(float) );
cudaMalloc( (void**)&dev_partial_c, blocksPerGrid*sizeof(float) );
// fill in the host memory with data
for (int i=0; i<N; i++) {
a[i] = i;
b[i] = i*2;
}
// copy the arrays ‘a’ and ‘b’ to the GPU
cudaMemcpy( dev_a, a, N* sizeof(float), cudaMemcpyHostToDevice );
cudaMemcpy( dev_b, b, N*sizeof(float), cudaMemcpyHostToDevice );
dot<<<blocksPerGrid,threadsPerBlock>>>( dev_a, dev_b, dev_partial_c );
// copy the array 'c' back from the GPU to the CPU
// finish up on the CPU side
cudaMemcpy( partial_c, dev_partial_c,blocksPerGrid*sizeof(float),cudaMemcpyDeviceToHost );
c = 0;
for (int i=0; i<blocksPerGrid; i++) {
c += partial_c[i];
}
#define sum_squares(x) (x*(x+1)*(2*x+1)/6)
printf("Does GPU value %.6g = %.6g?\n", c, 2 * sum_squares( (float)(N - 1) ) );
// free memory on the GPU side
cudaFree( dev_a );
cudaFree( dev_b );
cudaFree( dev_partial_c );
// free memory on the CPU side
free( a );
free( b );
free( partial_c );
getchar();
}