Level Crossing Rates
水平交叉率
N
(
R
)
N(R)
N(R) 指信号包络以正方向穿过水平线
R
R
R 的速率,定义为:
N
(
R
)
=
∫
0
∞
r
˙
p
(
R
,
r
˙
)
d
r
˙
,
(1.3-32)
N(R)=\int_0^\infty \dot r p(R,\dot r)d\dot r,\tag {1.3-32}
N(R)=∫0∞r˙p(R,r˙)dr˙,(1.3-32)
由概率密度函数
p
(
r
,
r
˙
,
θ
,
θ
˙
)
=
r
2
4
π
2
b
0
b
2
exp
[
−
1
2
(
r
2
b
0
+
r
˙
2
b
2
+
r
2
θ
˙
2
b
2
)
]
(1.3-33)
p(r,\dot r,\theta, \dot\theta)={r^2\over 4\pi^2b_0b_2}\exp \left[-{1\over 2}\left({r^2\over b_0}+{\dot r^2\over b_2}+{r^2\dot\theta^2\over b_2}\right)\right]\tag {1.3-33}
p(r,r˙,θ,θ˙)=4π2b0b2r2exp[−21(b0r2+b2r˙2+b2r2θ˙2)](1.3-33) 得到
p
(
r
,
r
˙
)
=
∫
0
2
π
d
θ
∫
−
∞
∞
p
(
r
,
r
˙
,
θ
,
θ
˙
)
d
θ
˙
=
r
b
0
e
−
r
2
/
2
b
0
1
2
π
b
2
e
−
r
˙
2
/
2
b
2
(1.3-34)
p(r,\dot r)=\int_0^{2\pi}d\theta\int_{-\infty}^\infty p(r,\dot r,\theta, \dot\theta)d\dot\theta ={r\over b_0}e^{-r^2/ 2b_0}{1\over\sqrt{2\pi b_2}}e^{-\dot r^2/ 2b_2}\tag {1.3-34}
p(r,r˙)=∫02πdθ∫−∞∞p(r,r˙,θ,θ˙)dθ˙=b0re−r2/2b02πb21e−r˙2/2b2(1.3-34)
证明(1.3-33):
设
x
=
(
x
,
x
˙
,
y
,
y
˙
)
T
\mathrm x=(x, \dot x, y,\dot y)^T
x=(x,x˙,y,y˙)T,
x
x
T
=
(
σ
x
2
0
0
0
0
σ
x
˙
2
0
0
0
0
σ
x
2
0
0
0
0
σ
x
˙
2
)
=
(
b
0
0
0
0
0
b
2
0
0
0
0
b
0
0
0
0
0
b
2
)
\mathrm x\mathrm x^T=\begin{pmatrix}\sigma_x^2&0&0&0\\0&\sigma_{\dot x}^2&0&0\\0&0&\sigma_x^2&0\\0&0&0&\sigma_{\dot x}^2\end{pmatrix}=\begin{pmatrix}b_0&0&0&0\\0&b_2&0&0\\0&0&b_0&0\\0&0&0&b_2\end{pmatrix}
xxT=⎝⎜⎜⎛σx20000σx˙20000σx20000σx˙2⎠⎟⎟⎞=⎝⎜⎜⎛b00000b20000b00000b2⎠⎟⎟⎞
由
p
(
x
,
x
˙
,
y
,
y
˙
)
=
1
4
π
2
b
0
b
2
exp
(
x
2
+
y
2
b
0
+
x
˙
2
+
y
˙
2
b
2
)
,
p(x, \dot x, y,\dot y)={1\over 4\pi^2 b_0b_2}\exp({x^2+y^2\over b_0}+{\dot x^2+\dot y^2\over b_2}),
p(x,x˙,y,y˙)=4π2b0b21exp(b0x2+y2+b2x˙2+y˙2),
d
x
d
x
˙
d
y
d
y
˙
=
r
2
d
r
d
r
˙
d
θ
d
θ
˙
dxd\dot xdyd\dot y=r^2drd\dot rd\theta d\dot\theta
dxdx˙dydy˙=r2drdr˙dθdθ˙ 得到 (1.3-33)。证毕。
水平交叉率 N ( R ) = p ( R ) 2 π b 2 ∫ 0 ∞ r ˙ e − r ˙ 2 / 2 b 2 d r ˙ = b 2 π b 0 ρ e − ρ 2 (1.3-35) N(R)={p(R)\over\sqrt{2\pi b_2}}\int_0^\infty \dot r e^{-\dot r^2/ 2b_2}d\dot r=\sqrt{b_2\over \pi b_0}\rho e^{-\rho^2}\tag {1.3-35} N(R)=2πb2p(R)∫0∞r˙e−r˙2/2b2dr˙=πb0b2ρe−ρ2(1.3-35) 这里 ρ = R / 2 b 0 \rho=R/\sqrt{2b_0} ρ=R/2b0 。 对于电场分量 E z E_z Ez, b 2 / b 0 = ω m 2 / 2 b_2/b_0=\omega_m^2/2 b2/b0=ωm2/2。
Duration of Fades
平均衰落区间指信号包络在 R R R 以下的平均时间。设第 i i i 的衰落时间为 τ i \tau_i τi,那么在时间 T T T 衰落的概率为 p ( r < R ) = 1 T ∑ τ i (1.3-40) p(r<R)={1\over T}\sum \tau_i \tag {1.3-40} p(r<R)=T1∑τi(1.3-40) 平均衰落时间 τ ˉ = 1 T N ( R ) ∑ τ i = 1 N ( R ) p ( r < R ) (1.3-41) \bar\tau={1\over T N(R)}\sum \tau_i ={1\over N(R)}p(r<R) \tag {1.3-41} τˉ=TN(R)1∑τi=N(R)1p(r<R)(1.3-41)
Ref.
- Microwave Mobile Communicatiaons, Ch1.
- W. B. Davenport, Jr., and W. L. Root, An Introduction to the Theory of Randum Signals and Noise, McGraw-Hill, New York, 1958.