在Spark SQL中SQLContext是创建DataFrames和执行SQL的入口,在spark-1.5.2中已经内置了一个sqlContext
1.在本地创建一个文件,有三列,分别是id、name、age,用空格分隔,然后上传到hdfs上
hdfs dfs -put person.txt /
2.在spark shell执行下面命令,读取数据,将每一行的数据使用列分隔符分割
val lineRDD = sc.textFile("hdfs://node1.itcast.cn:9000/person.txt").map(_.split(" "))
3.定义case class(相当于表的schema)
case class Person(id:Int, name:String, age:Int)
4.将RDD和case class关联
val personRDD = lineRDD.map(x => Person(x(0).toInt, x(1), x(2).toInt))
5.将RDD转换成DataFrame
val personDF = personRDD.toDF
6.对DataFrame进行处理
personDF.show
1.1.1. DSL风格语法
//查看DataFrame中的内容
personDF.show
//查看DataFrame部分列中的内容
personDF.select(personDF.col("name")).show
personDF.select(col("name"), col("age")).show
personDF.select("name").show
//打印DataFrame的Schema信息
personDF.printSchema
//查询所有的name和age,并将age+1
personDF.select(col("id"), col("name"), col("age") + 1).show
personDF.select(personDF("id"), personDF("name"), personDF("age") + 1).show
//过滤age大于等于18的
personDF.filter(col("age") >= 18).show
//按年龄进行分组并统计相同年龄的人数
personDF.groupBy("age").count().show()
1.1.1. SQL风格语法
如果想使用SQL风格的语法,需要将DataFrame注册成表
personDF.registerTempTable("t_person")
//查询年龄最大的前两名
sqlContext.sql("select * from t_person order by age desc limit 2").show
//显示表的Schema信息
sqlContext.sql("desc t_person").show