(beginer) 最小生成树 UVA 10600 ACM Contest and Blackout

本文详细阐述了如何通过最小生成树算法找出城市学校电力连接的最经济方案,并进一步寻找次经济方案。包括输入数据解析、算法实现及输出结果解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

In order to prepare the “The First National ACM School Contest”(in 20??) the major of the city decided to provide all the schools with a reliable source of power. (The major is really afraid of blackoutsJ). So, in order to do that, power station “Future” and one school (doesn’t matter which one) must be connected; in addition, some schools must be connected as well.

 

You may assume that a school has a reliable source of power if it’s connected directly to “Future”, or to any other school that has a reliable source of power. You are given the cost of connection between some schools. The major has decided to pick out two the cheapest connection plans – the cost of the connection is equal to the sum of the connections between the schools. Your task is to help the major – find the cost of the two cheapest connection plans.

 

Input

The Input starts with the number of test cases, T (1?T?15) on a line. Then T test cases follow. The first line of every test case contains two numbers, which are separated by a space, N (3?N?100) the number of schools in the city, and M the number of possible connections among them. Next M lines contain three numbers Ai, Bi, Ci , where Ci  is the cost of the connection (1?Ci?300) between schools Ai  and Bi. The schools are numbered with integers in the range 1 to N.

 

Output

For every test case print only one line of output. This line should contain two numbers separated by a single space - the cost of two the cheapest connection plans. Let S1 be the cheapest cost and S2 the next cheapest cost. It’s important, that S1=S2 if and only if there are two cheapest plans, otherwise S1?S2. You can assume that it is always possible to find the costs S1 and S2..

 

Sample Input

Sample Output

2

5 8

1 3 75

3 4 51

2 4 19

3 2 95

2 5 42

5 4 31

1 2 9

3 5 66

9 14

1 2 4

1 8 8

2 8 11

3 2 8

8 9 7

8 7 1

7 9 6

9 3 2

3 4 7

3 6 4

7 6 2

4 6 14

4 5 9

5 6 10

110 121

37 37


题意:找出最小生成树和次小生成树的长度。可能是相等的。

思路:首先找出最小生成树,然后在这个树中求出任意两点之间的最大边权,然后在枚举没有加进最小生成树的边中加边进来,假设加进来的边是(u,v) 那么我们从原来的的生成树中删掉u->v的路径中最大的边。

代码:
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn = 110;
const int inf = 1e9;
int n , m;
int p[maxn];
int maxcost[maxn][maxn];
bool vis[maxn];
bool sel[maxn*maxn];

int find(int x)
{
	if (x==p[x]) return x;
	return p[x] = find(p[x]);
}

struct Edge
{
	Edge(int uu=0,int vv=0,int ww=0) : u(uu) , v(vv) , w(ww) { }
	int u , v , w;
}edge[maxn*maxn];

inline bool operator < (const Edge &e1,const Edge &e2)
{
	return e1.w < e2.w;
}

vector<Edge> G[maxn];

inline int max(int a,int b) { return a < b ? b : a; }
void input()
{
	int u ,v , w;
	for (int i = 0 ; i < m ; ++i)
	{
		scanf("%d%d%d",&u,&v,&w);
		edge[i] = Edge(u,v,w);
	}
	sort(edge,edge+m);
}

void dfs(int s,int x,int maxc)
{
	if (vis[x]) return;
	vis[x] = true;
	if (maxcost[s][x] < maxc) maxcost[s][x] = maxc;
	for (int i = 0 ; i < G[x].size() ; ++i)
	{
		int y = G[x][i].v;
		dfs(s,y,max(maxc,G[x][i].w));
	}
}

void solve()
{
	for (int i = 1 ; i <= n ; ++i) p[i] = i , G[i].clear();
	int u , v , w;
	int S1 = 0 , S2 = inf;
	for (int i = 0 ; i < m ; ++i)
	{
		sel[i] = false;
		u = find(edge[i].u);
		v = find(edge[i].v);
		if (u==v) continue;
		sel[i] = true;
		p[u] = v;
		u = edge[i].u , v = edge[i].v;
		w = edge[i].w;
		G[u].push_back(Edge(u,v,w));
		G[v].push_back(Edge(v,u,w));
		S1 += w;
	}
	memset(maxcost,-1,sizeof(maxcost));
	printf("%d ",S1);
	for (int i = 1 ; i <= n ; ++i) { memset(vis,false,sizeof(vis)); dfs(i,i,-1); }
	for (int i = 0 ; i < m ; ++i) if (!sel[i])
		S2 = min(S2,S1+edge[i].w-maxcost[edge[i].u][edge[i].v]);
	printf("%d\n",S2);
}

int main()
{
	int T; cin>>T;
	while (T--)
	{
		scanf("%d%d",&n,&m);
		input();
		solve();
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值