/*
取对数后得
ln(x)/x=(1+ln(y))/(e*y)
显然右边是常数
作图可知道ln(x)/x在x>=1范围先增后减,极值在x=e处
对于任意一个y!=1,都有左右两个解,二分解决就是了……
*/
#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std;
const double ee=2.718281828459;
const double eps=1e-7;
int main()
{
double x,y;
// for(int i=1;i<=2000;i++)
// cout<<log(i)/(1.0*i)<<endl;
// while(scanf("%lf",&y)!=EOF)
while(scanf("%lf",&y)!=EOF)
{
double tmp=(1+log(y))/(y*ee);
double low=1+eps,hei=ee-eps,mid;
if(tmp*ee-1>eps){puts("Happy to Women’s day!");continue;}
while(hei-low>eps)
{
mid=(hei+low)/2;
if(log(mid)*(y*ee)>(1+log(y))*mid)
hei=mid;
else
low=mid;
}
if(y==1)printf("%.5lf\n",(hei+low)/2);
else if(y>1)
{
double ans=(hei+low)/2;
low=ee+eps,hei=2000000000+eps;
while(hei-low>eps)
{
mid=(hei+low)/2;
if(log(mid)*(y*ee)<(1+log(y))*mid)
hei=mid;
else
low=mid;
}
printf("%.5lf %.5lf\n",ans,(hei+low)/2);
}
}
return 0;
}