654.最大二叉树
class Solution:
def constructMaximumBinaryTree(self, nums: List[int]) -> Optional[TreeNode]:
if len(nums) == 1: return TreeNode(nums[0])
# 构造一个新返回节点
node = TreeNode(0)
maxValue = 0
maxValueIndex = 0
for i in range(len(nums)):
if nums[i] > maxValue:
maxValue = nums[i]
maxValueIndex = i
node.val = maxValue
if maxValueIndex > 0 :
new_list = nums[:maxValueIndex]
node.left = self.constructMaximumBinaryTree(new_list)
if maxValueIndex < len(nums) -1 :
new_list = nums[maxValueIndex+1:]
node.right = self.constructMaximumBinaryTree(new_list)
return node
• 时间复杂度:O(n^2),其中 n 是数组的长度。每次调用 max(nums) 和 nums.index() 需要 O(n),而每次递归调用的规模会减小。
• 空间复杂度:O(n),递归调用栈的最大深度在最坏情况下是 O(n),如数组为递增或递减序列。
class Solution:
def constructMaximumBinaryTree(self, nums: List[int]) -> Optional[TreeNode]:
if not nums: return None
max_val = max(nums)
max_index = nums.index(max_val)
node = TreeNode(max_val)
node.left = self.constructMaximumBinaryTree(nums[:max_index])
node.right = self.constructMaximumBinaryTree(nusm[max_index+1:])
return node
617.合并二叉树
解题思路:直接在原root1上进行改变,步数同步进行
class Solution:
def mergeTrees(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> Optional[TreeNode]:
if not root1: return root2
if not root2: return root1
root1.val += root2.val
root1.left = self.mergeTrees(root1.left, root2.left)
root1.right = self.mergeTrees(root1.right, root2.right)
return root1
700.二叉搜索树中的搜索
BSF --> left.val < node.val < right.val
解题思路:递归法
class Solution:
def searchBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
if not root or root.val == val: return root
if root.val > val:
return self.searchBST(root.left, val)
if root.val < val:
return self.searchBST(root.right, val)
解题思路:迭代法
class Solution:
def searchBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
while root:
if root.val > val: root = root.left
elif root.val < val: root = root.right
else: return root
return None
98.验证二叉搜索树
解题思路:递归法,通过构造一个vec list,将数值按照中序存入,最后判断是否是按照从小到大排序的
class Solution:
def __init__(self):
self.vec = []
def traversal(self, root):
if not root: return
# 中序遍历-->就是按照从小到大返回
self.traversal(root.left)
self.vec.append(root.val)
self.traversal(root.right)
def isValidBST(self, root: Optional[TreeNode]) -> bool:
self.vec = []
self.traversal(root)
for i in range(1, len(self.vec)):
if self.vec[i] <= self.vec[i-1]:
return False
return True
解题思路:递归法
class Solution:
def isValidBST(self, root: Optional[TreeNode]) -> bool:
stack = []
cur = root
pre = None # 前一个节点
while cur or len(stack) > 0:
# 遍历到最左节点
while cur:
stack.append(cur)
cur = cur.left # 左
# 处理当前节点
cur = stack.pop() # 中
if pre is not None and cur.val <= pre.val:
return False
pre = cur # 更新前一节点
# 处理右子树
cur = cur.right # 右
return True