- 博客(12)
- 收藏
- 关注
原创 随机梯度下降算法作业
这里先画出100个测试数据和它的初始预测曲线,由图可看出,测试数据的拟合曲线更像是一条正比例函数这里一开始姑且将预测曲线设置为y = w * x , w的初始值为0.1下面开始随机梯度下降算法,随机梯度下降区别于传统梯度下降表现在,一次训练过程只从这100个数据中随机抽取一个数据进行梯度下降,代码实现如下:import randomimport datasetimport matplotlib.pyplot as pltxs, ys = dataset.get_beans(..
2021-11-12 08:58:21
467
原创 paddlepaddle强化学习作业
import gym, osfrom itertools import countimport paddleimport paddle.nn as nnimport paddle.optimizer as optimimport paddle.nn.functional as Ffrom paddle.distribution import Categoricaldevice = paddle.get_device()env = gym.make("CartPole-v0") ### .
2021-10-21 16:52:12
136
原创 paddlepaddle手写体输入识别作业
训练代码import paddlefrom paddle.nn import Linearimport paddle.nn.functional as Fimport osimport numpy as npimport matplotlib.pyplot as plt# 设置数据读取器,API自动读取MNIST数据训练集train_dataset = paddle.vision.datasets.MNIST(mode='train')train_data0 = np.arra.
2021-10-19 19:49:36
189
原创 paddlepaddle卷积神经网络作业
import paddleimport paddle.nn.functional as Ffrom paddle.vision.transforms import ToTensorimport numpy as npimport matplotlib.pyplot as pltprint(paddle.__version__)transform = ToTensor()cifar10_train = paddle.vision.datasets.Cifar10(mode='train',t.
2021-10-15 21:35:00
332
原创 隐马尔科夫算法作业
运行截图代码如下# 定义第一天的初始概率start_probability = {'Rainy': 0.6, 'Sunny': 0.4}# 定义天气转化的概率transition_probability = { 'Rainy': {'Rainy': 0.7, 'Sunny': 0.3}, 'Sunny': {'Rainy': 0.4, 'Sunny': 0.6},}# 定义在不同天气下进行不同工作的概率emission_probability = { ..
2021-09-30 17:12:44
138
原创 改进版欧拉算法(作业5)
先上运行结果这是代码import numpy as npimport matplotlib.pyplot as pltcount = 80x0 = 0y0 = 1xx = np.random.rand(count)yy = np.random.rand(count)# 定义步长h = 1 / countfor i in range(0, count): # 预报值 y1 = (1.1 * y0) - 0.2 * x0 / y0 x1 =...
2021-09-24 17:09:02
139
原创 机器学习感知器(作业3)
import matplotlib.pyplot as pltimport numpy as npxs = np.array([0, 0, 1, 1])ys = np.array([0, 1, 0, 1])zs = np.array([0, 0, 0, 1])w1 = 0.1w2 = 0.1z = w1 * xs + w2 * ysa = 1 / (1 + np.exp(-z))for _ in range(10): for i in range(4): x .
2021-09-10 14:54:19
126
原创 梯度下降算法(作业2)
import numpy as npxs = np.array([[2104, 3], [1600, 3], [2400, 3], [1416, 2], [3000, 4]])zs = np.array([400, 330, 369, 232, 540])alpha = 0.1ct0 = np.random.random()ct1 = np.random.random()ct2 = np.random.random()theta = np.array([ct1, ct2])eps =.
2021-09-03 16:13:57
142
转载 numpy中简单且实用的操作(作业1)
numpy基本加减和取行操作import numpy as npa = np.array([1, 1, 1, 1])b = np.array([[1], [1], [1], [1]])print(a + b)print("#########")c = np.array([1, 1, 1, 1])print(c+b)# array([[2,2,2,2],# [2,2,2,2],# [2,2,2,2],# [2,2,2,2]])print.
2021-09-03 16:09:14
206
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人