HDU 1018 Big Number

本文介绍了一种高效计算大整数阶乘位数的方法,通过避免直接计算阶乘值来解决内存溢出问题。利用对数性质,文章提供了一个基于斯特林公式的实现方案,并附带了完整的C语言代码。

Big Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 16750    Accepted Submission(s): 7451


Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
 

Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 10 7 on each line.
 

Output
The output contains the number of digits in the factorial of the integers appearing in the input.
 

Sample Input
  
  
2 10 20
 

Sample Output
  
  
7 19
 

Source
 

Recommend
JGShining
 

分析:题意就是求n的阶乘后的数字有几位。因为数据量很大所以不可能把阶乘算出来,所以构造令N!=10^t,然后两边取对数t=log10(N)+log(N-1)+……+log10(1).

floor(t)就是这个数字除最高位外的位数,然后再加上1(最高位还有1位)。数学公式(斯特林公式:lnN!=NlnN-N+0.5*ln(2*N*pi)

代码:

#include<stdio.h>
#include<math.h>

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int n,i;
        scanf("%d",&n);
        double sum=0;
        for(i=1;i<=n;i++)
            sum+=log10((double)i);
        printf("%d\n",(int)floor(sum)+1);
    }
    return 0;
}

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值