第1章 RocketMQ概述
一、 MQ概述
1、 MQ简介
MQ, Message Queue,是一种提供 消息队列服务 的中间件,也称为消息中间件,是一套提供了消息生 产、存储、消费全过程API的软件系统。消息即数据。一般消息的体量不会很大。
2、 MQ用途
从网上可以查看到很多的关于MQ用途的叙述,但总结起来其实就以下三点。
限流削峰
MQ可以将系统的 超量 请求暂存其中,以便系统后期可以慢慢进行处理,从而避免了请求的丢失或系统 被压垮。


异步解耦
上游系统对下游系统的调用若为同步调用,则会大大降低系统的吞吐量与并发度,且系统耦合度太高。 而异步调用则会解决这些问题。所以两层之间若要实现由同步到异步的转化,一般性做法就是,在这两 层间添加一个MQ层。

数据收集
分布式系统会产生海量级数据流,如:业务日志、监控数据、用户行为等。针对这些数据流进行实时或 批量采集汇总,然后对这些数据流进行大数据分析,这是当前互联网平台的必备技术。通过MQ完成此 类数据收集是最好的选择。
3、 常见MQ产品
ActiveMQ
ActiveMQ是使用Java语言开发一款MQ产品。 早期很多公司与项目中都在使用。但现在的社区活跃度已 经很低。现在的项目中已经很少使用了。
RabbitMQ
RabbitMQ是使用ErLang语言开发的一款MQ产品。其吞吐量较Kafka与RocketMQ要低,且由于其不是 Java语言开发,所以公司内部对其实现定制化开发难度较大。
Kafka
Kafka是使用Scala/Java语言开发的一款MQ产品。其最大的特点就是高吞吐率,常用于大数据领域的实
时计算、日志采集等场景。其没有遵循任何常见的MQ协议,而是使用自研协议。对于Spring Cloud Netçix,其仅支持RabbitMQ与Kafka。
RocketMQ
RocketMQ是使用Java语言开发的一款MQ产品。经过数年阿里双11的考验,性能与稳定性非常高。其 没有遵循任何常见的MQ协议,而是使用自研协议。对于Spring Cloud Alibaba,其支持RabbitMQ、 Kafka,但提倡使用RocketMQ。
对比
关键词 ACTIVEMQ RABBITMQ KAFKA ROCKETMQ
开发语言 Java ErLang Java Java
单机吞吐量 万级 万级 十万级 十万级
Topic —— —— 百级Topic时会影响系统吞吐 千级Topic时会影响系统吞吐
社区活跃度 低 高 高 高
4、 MQ常见协议
一般情况下MQ的实现是要遵循一些常规性协议的。常见的协议如下:
JMS
JMS, Java Messaging Service(Java消息服务)。是Java平台上有关MOM(Message Oriented Middleware,面向消息的中间件 PO/OO/AO)的技术规范,它便于消息系统中的Java应用程序进行消 息交换,并且通过提供标准的产生、发送、接收消息的接口,简化企业应用的开发。 ActiveMQ是该协 议的典型实现。
STOMP
STOMP, Streaming Text Orientated Message Protocol (面向流文本的消息协议),是一种MOM设计 的简单文本协议。 STOMP提供一个可互操作的连接格式,允许客户端与任意STOMP消息代理
(Broker)进行交互。 ActiveMQ是该协议的典型实现, RabbitMQ通过插件可以支持该协议。
AMQP
AMQP,Advanced Message Queuing Protocol (高级消息队列协议),一个提供统一消息服务的应用 层标准,是应用层协议的一个开放标准,是一种MOM设计。基于此协议的客户端与消息中间件可传递 消息,并不受客户端/中间件不同产品,不同开发语言等条件的限制。 RabbitMQ是该协议的典型实 现。
MQTT
MQTT, Message Queuing Telemetry Transport (消息队列遥测传输),是IBM开发的一个即时通讯协 议,是一种二进制协议,主要用于服务器和低功耗IoT (物联网)设备间的通信。该协议支持所有平 台,几乎可以把所有联网物品和外部连接起来,被用来当做传感器和致动器的通信协议。 RabbitMQ通 过插件可以支持该协议。
二、 RocketMQ概述
1、 RocketMQ简介

RocketMQ是一个统一消息引擎、轻量级数据处理平台。
RocketMQ是⼀款阿⾥巴巴开源的消息中间件。 2016年11⽉28⽇,阿⾥巴巴向 Apache 软件基⾦会捐赠 RocketMQ,成为 Apache 孵化项⽬。 2017 年 9 ⽉ 25 ⽇, Apache 宣布 RocketMQ孵化成为 Apache 顶 级项⽬(TLP ),成为国内⾸个互联⽹中间件在 Apache 上的顶级项⽬。
官⽹地址: http://rocketmq.apache.org
2、 RocketMQ发展历程
2007年,阿里开始五彩石项目, Notify作为项目中 交易核心消息流转系统 ,应运而生。 Notify系统是 RocketMQ的雏形。
2010年, B2B大规模使用ActiveMQ作为阿里的消息内核。阿里急需一个具有 海量堆积能力 的消息系 统。
2011年初, Kafka开源。淘宝中间件团队在对Kafka进行了深入研究后,开发了一款新的MQ, MetaQ。
2012年, MetaQ发展到了v3.0版本,在它基础上进行了进一步的抽象,形成了RocketMQ,然后就将其 进行了开源。
2015年,阿里在RocketMQ的基础上,又推出了一款专门针对阿里云上用户的消息系统AliwareMQ。
2016年双十一, RocketMQ承载了 万亿级 消息的流转,跨越了一个新的里程碑。 11⽉28⽇,阿⾥巴巴 向 Apache 软件基⾦会捐赠 RocketMQ,成为 Apache 孵化项⽬。
2017 年 9 ⽉ 25 ⽇, Apache 宣布 RocketMQ孵化成为 Apache 顶级项⽬(TLP ),成为国内⾸个互联 ⽹中间件在 Apache 上的顶级项⽬。
第2章 RocketMQ的安装与启动
一、 基本概念
1 消息(Message)
消息是指,消息系统所传输信息的物理载体,生产和消费数据的最小单位,每条消息必须属于一个主题。
2 主题(Topic)

Topic表示一类消息的集合,每个主题包含若干条消息,每条消息只能属于一个主题,是RocketMQ进行消息订阅的基本单位。 topic:message 1:n message:topic 1:1
一个生产者可以同时发送多种Topic的消息;而一个消费者只对某种特定的Topic感兴趣,即只可以订阅 和消费一种Topic的消息。 producer:topic 1:n consumer:topic 1:1
3 标签(Tag)
为消息设置的标签,用于同一主题下区分不同类型的消息。来自同一业务单元的消息,可以根据不同业 务目的在同一主题下设置不同标签。标签能够有效地保持代码的清晰度和连贯性,并优化RocketMQ提 供的查询系统。消费者可以根据Tag实现对不同子主题的不同消费逻辑,实现更好的扩展性。
Topic是消息的一级分类,Tag是消息的二级分类。
Topic:货物
tag=上海
tag=江苏
tag=浙江
------- 消费者 -----
topic=货物 tag = 上海
topic=货物 tag = 上海|浙江
topic=货物 tag = *
- 队列(Queue)
存储消息的物理实体。一个Topic中可以包含多个Queue,每个Queue中存放的就是该Topic的消息。一 个Topic的Queue也被称为一个Topic中消息的分区(Partition)。
一个Topic的Queue中的消息只能被一个消费者组中的一个消费者消费。一个Queue中的消息不允许同 一个消费者组中的多个消费者同时消费。

在学习参考其它相关资料时,还会看到一个概念:分片(Sharding)。分片不同于分区。在RocketMQ 中,分片指的是存放相应Topic的Broker。每个分片中会创建出相应数量的分区,即Queue,每个 Queue的大小都是相同的。

5、消息标识(MessageId/Key)
RocketMQ中每个消息拥有唯一的MessageId,且可以携带具有业务标识的Key,以方便对消息的查询。 不过需要注意的是,MessageId有两个:在生产者send()消息时会自动生成一个MessageId(msgId), 当消息到达Broker后,Broker也会自动生成一个MessageId(offsetMsgId)。msgId、offsetMsgId与key都 称为消息标识。
msgId:由producer端生成,其生成规则为:
producerIp + 进程pid + MessageClientIDSetter类的ClassLoader的hashCode +
当前时间 + AutomicInteger自增计数器
offsetMsgId:由broker端生成,其生成规则为: brokerIp + 物理分区的offset(Queue中的
偏移量)
key:由用户指定的业务相关的唯一标识
二、系统架构

RocketMQ架构上主要分为四部分构成:
1、Producer
消息生产者,负责生产消息。Producer通过MQ的负载均衡模块选择相应的Broker集群队列进行消息投 递,投递的过程支持快速失败并且低延迟。
例如,业务系统产生的日志写入到MQ过程,就是消息生产的过程
再如,电商平台中用户提交的秒杀请求写入到MQ过程,就是消息生产的过程
RocketMQ中的消息生产者都是以生产者组(Producer Group)的形式出现的。生产者组是同一类生产 者的集合,这类Producer发送相同Topic类型的消息。一个生产者组可以同时发送多个主题的消息。
2、Consumer
消息消费者,负责消费消息。一个消息消费者会从Broker服务器中获取到消息,并对消息进行相关业务 处理。
例如,QoS MQ 读取日志,并对日志进行解析处理的过程就是消息消费的过程。
再如,电商平台的业务系统从MQ读取到秒杀请求,并对请求进行处理的过程就是消息消费的过程。
RocketMQ中的消息消费者都是以消费者组(Consumer Group)的形式出现的。消费者组是同一类消 费者的集合,这类Consumer消费的是同一个Topic类型的消息。消费者组使得在消息消费方面,实现 负载均衡 (将一个Topic中的不同的Queue平均分配给同一个Consumer Group的不同的Consumer,注 意,并不是将消息负载均衡)和 容错 (一个Consmer挂了,该Consumer Group中的其它Consumer可 以接着消费原Consumer消费的Queue)的目标变得非常容易。

消费者组中Consumer的数量应该小于等于订阅Topic的Queue数量。如果超出Queue数量,则多出的Consumer将不能消费消息。

不过,一个Topic类型的消息可以被多个消费者组同时消费。
注意,
1)消费者组只能消费一个Topic的消息,不能同时消费多个Topic消息。
2)一个消费者组中的消费者必须订阅完全相同的Topic。
3、Name Server
功能介绍
NameServer是一个Broker与Topic路由的注册中心,支持Broker的动态注册与发现。
RocketMQ的思想来自于Kafka,而Kafka是依赖了Zookeeper的。所以,在RocketMQ的早期版本,即在 MetaQ v1.0与v2.0版本中,也是依赖于Zookeeper的。从MetaQ v3.0,即RocketMQ开始去掉了 Zookeeper依赖,使用了自己的NameServer。
主要包括两个功能:
Broker管理:接受Broker集群的注册信息并且保存下来作为路由信息的基本数据;提供心跳检测 机制,检查Broker是否还存活。
路由信息管理:每个NameServer中都保存着Broker集群的整个路由信息和用于客户端查询的队列 信息。Producer和Conumser通过NameServer可以获取整个Broker集群的路由信息,从而进行消 息的投递和消费。
路由注册
NameServer通常也是以集群的方式部署,不过,NameServer是无状态的,即NameServer集群中的各 个节点间是无差异的,各节点间相互不进行信息通讯。那各节点中的数据是如何进行数据同步的呢?在 Broker节点启动时,轮询NameServer列表,与每个NameServer节点建立长连接,发起注册请求。在 NameServer内部维护着⼀个Broker列表,用来动态存储Broker的信息。
注意,这是与其它像zk、Eureka、Nacos等注册中心不同的地方。
这种NameServer的无状态方式,有什么优缺点:
优点:NameServer集群搭建简单,扩容简单。
缺点:对于Broker,必须明确指出所有NameServer地址。否则未指出的将不会去注册。也正因
为如此,NameServer并不能随便扩容。因为,若Broker不重新配置,新增的NameServer对于
Broker来说是不可见的,其不会向这个NameServer进行注册。
Broker节点为了证明自己是活着的,为了维护与NameServer间的长连接,会将最新的信息以 心跳包 的方式上报给NameServer,每30秒发送一次心跳。心跳包中包含 BrokerId、Broker地址(IP+Port)、 Broker名称、Broker所属集群名称等等。NameServer在接收到心跳包后,会更新心跳时间戳,记录这 个Broker的最新存活时间。
路由剔除
由于Broker关机、宕机或网络抖动等原因,NameServer没有收到Broker的心跳,NameServer可能会将 其从Broker列表中剔除。
NameServer中有⼀个定时任务,每隔10秒就会扫描⼀次Broker表,查看每一个Broker的最新心跳时间 戳距离当前时间是否超过120秒,如果超过,则会判定Broker失效,然后将其从Broker列表中剔除。
扩展:对于RocketMQ日常运维工作,例如Broker升级,需要停掉Broker的工作。OP需要怎么
做?
OP需要将Broker的读写权限禁掉。一旦client(Consumer或Producer)向broker发送请求,都会收
到broker的NO_PERMISSION响应,然后client会进行对其它Broker的重试。
当OP观察到这个Broker没有流量后,再关闭它,实现Broker从NameServer的移除。
OP:运维工程师
SRE:Site Reliability Engineer,现场可靠性工程师。
路由发现
RocketMQ的路由发现采用的是Pull模型。当Topic路由信息出现变化时,NameServer不会主动推送给 客户端,而是客户端定时拉取主题最新的路由。默认客户端每30秒会拉取一次最新的路由。
扩展:
1)Push模型:推送模型。其实时性较好,是一个“发布-订阅”模型,需要维护一个长连接。而
长连接的维护是需要资源成本的。该模型适合于的场景:
实时性要求较高
Client数量不多,Server数据变化较频繁
2)Pull模型:拉取模型。存在的问题是,实时性较差。
3)Long Polling模型:长轮询模型。其是对Push与Pull模型的整合,充分利用了这两种模型的优
势,屏蔽了它们的劣势。
客户端NameServer选择策略
这里的客户端指的是Producer与Consumer
客户端在配置时必须要写上NameServer集群的地址,那么客户端到底连接的是哪个NameServer节点 呢?客户端首先会生产一个随机数,然后再与NameServer节点数量取模,此时得到的就是所要连接的 节点索引,然后就会进行连接。如果连接失败,则会采用round-robin策略,逐个尝试着去连接其它节点。
首先采用的是 随机策略 进行的选择,失败后采用的是 轮询策略 。
扩展:Zookeeper Client是如何选择Zookeeper Server的?
简单来说就是,经过两次Shufe,然后选择第一台Zookeeper Server。
详细说就是,将配置文件中的zk server地址进行第一次shufe,然后随机选择一个。这个选择出
的一般都是一个hostname。然后获取到该hostname对应的所有ip,再对这些ip进行第二次
shufe,从shufe过的结果中取第一个server地址进行连接。
4、Broker
功能介绍
Broker充当着消息中转角色,负责存储消息、转发消息。Broker在RocketMQ系统中负责接收并存储从 生产者发送来的消息,同时为消费者的拉取请求作准备。Broker同时也存储着消息相关的元数据,包括 消费者组消费进度偏移offset、主题、队列等。
Kafka 0.8版本之后,offset是存放在Broker中的,之前版本是存放在Zookeeper中的。
模块构成
下图为Broker Server的功能模块示意图。

Remoting Module:整个Broker的实体,负责处理来自clients端的请求。而这个Broker实体则由以下模 块构成。
Client Manager:客户端管理器。负责接收、解析客户端(Producer/Consumer)请求,管理客户端。例 如,维护Consumer的Topic订阅信息
Store Service:存储服务。提供方便简单的API接口,处理 消息存储到物理硬盘 和 消息查询 功能。
HA Service:高可用服务,提供Master Broker 和 Slave Broker之间的数据同步功能。
Index Service:索引服务。根据特定的Message key,对投递到Broker的消息进行索引服务,同时也提 供根据Message Key对消息进行快速查询的功能。
集群部署

为了增强Broker性能与吞吐量,Broker一般都是以集群形式出现的。各集群节点中可能存放着相同 Topic的不同Queue。不过,这里有个问题,如果某Broker节点宕机,如何保证数据不丢失呢?其解决 方案是,将每个Broker集群节点进行横向扩展,即将Broker节点再建为一个HA集群,解决单点问题。
Broker节点集群是一个主从集群,即集群中具有Master与Slave两种角色。Master负责处理读写操作请 求,Slave负责对Master中的数据进行备份。当Master挂掉了,Slave则会自动切换为Master去工作。所 以这个Broker集群是主备集群。一个Master可以包含多个Slave,但一个Slave只能隶属于一个Master。 Master与Slave 的对应关系是通过指定相同的BrokerName、不同的BrokerId 来确定的。BrokerId为0表 示Master,非0表示Slave。每个Broker与NameServer集群中的所有节点建立长连接,定时注册Topic信 息到所有NameServer。
5、工作流程
具体流程
1)启动NameServer,NameServer启动后开始监听端口,等待Broker、Producer、Consumer连接。
2)启动Broker时,Broker会与所有的NameServer建立并保持长连接,然后每30秒向NameServer定时 发送心跳包。
3)发送消息前,可以先创建Topic,创建Topic时需要指定该Topic要存储在哪些Broker上,当然,在创 建Topic时也会将Topic与Broker的关系写入到NameServer中。不过,这步是可选的,也可以在发送消 息时自动创建Topic。
4)Producer发送消息,启动时先跟NameServer集群中的其中一台建立长连接,并从NameServer中获 取路由信息,即当前发送的Topic消息的Queue与Broker的地址(IP+Port)的映射关系。然后根据算法 策略从队选择一个Queue,与队列所在的Broker建立长连接从而向Broker发消息。当然,在获取到路由 信息后,Producer会首先将路由信息缓存到本地,再每30秒从NameServer更新一次路由信息。
5)Consumer跟Producer类似,跟其中一台NameServer建立长连接,获取其所订阅Topic的路由信息, 然后根据算法策略从路由信息中获取到其所要消费的Queue,然后直接跟Broker建立长连接,开始消费 其中的消息。Consumer在获取到路由信息后,同样也会每30秒从NameServer更新一次路由信息。不过 不同于Producer的是,Consumer还会向Broker发送心跳,以确保Broker的存活状态。
Topic的创建模式 手动创建Topic时,有两种模式:
集群模式:该模式下创建的Topic在该集群中,所有Broker中的Queue数量是相同的。
Broker模式:该模式下创建的Topic在该集群中,每个Broker中的Queue数量可以不同。
自动创建Topic时,默认采用的是Broker模式,会为每个Broker默认创建4个Queue。
读/写队列
从物理上来讲,读/写队列是同一个队列。所以,不存在读/写队列数据同步问题。读/写队列是逻辑上进 行区分的概念。一般情况下,读/写队列数量是相同的。
例如,创建Topic时设置的写队列数量为8,读队列数量为4,此时系统会创建8个Queue,分别是0 1 2 3 4 5 6 7。Producer会将消息写入到这8个队列,但Consumer只会消费0 1 2 3这4个队列中的消息,4 5 6 7中的消息是不会被消费到的。
再如,创建Topic时设置的写队列数量为4,读队列数量为8,此时系统会创建8个Queue,分别是0 1 2 3 4 5 6 7。Producer会将消息写入到0 1 2 3 这4个队列,但Consumer只会消费0 1 2 3 4 5 6 7这8个队列中的消息,但是4 5 6 7中是没有消息的。此时假设Consumer Group中包含两个Consuer,Consumer1消费0 1 2 3,而Consumer2消费4 5 6 7。但实际情况是,Consumer2是没有消息可消费的。
也就是说,当读/写队列数量设置不同时,总是有问题的。那么,为什么要这样设计呢?
其这样设计的目的是为了,方便Topic的Queue的缩容。
例如,原来创建的Topic中包含16个Queue,如何能够使其Queue缩容为8个,还不会丢失消息?可以动 态修改写队列数量为8,读队列数量不变。此时新的消息只能写入到前8个队列,而消费都消费的却是 16个队列中的数据。当发现后8个Queue中的消息消费完毕后,就可以再将读队列数量动态设置为8。整 个缩容过程,没有丢失任何消息。
perm用于设置对当前创建Topic的操作权限:2表示只写,4表示只读,6表示读写。
集群搭建理论

1、数据复制与刷盘策略

复制策略
复制策略是Broker的Master与Slave间的数据同步方式。分为同步复制与异步复制:
同步复制:消息写入master后,master会等待slave同步数据成功后才向producer返回成功ACK。
异步复制:消息写入master后,master立即向producer返回成功ACK,无需等待slave同步数据成
功。
异步复制策略会降低系统的写入延迟,RT变小,提高了系统的吞吐量。
刷盘策略
刷盘策略指的是broker中消息的落盘方式,即消息发送到broker内存后消息持久化到磁盘的方式。分为同步刷盘与异步刷盘:
同步刷盘:当消息持久化到broker的磁盘后才算是消息写入成功。
异步刷盘:当消息写入到broker的内存后即表示消息写入成功,无需等待消息持久化到磁盘。
1)异步刷盘策略会降低系统的写入延迟,RT变小,提高了系统的吞吐量
2)消息写入到Broker的内存,一般是写入到了PageCache
3)对于异步 刷盘策略,消息会写入到PageCache后立即返回成功ACK。但并不会立即做落盘操
作,而是当PageCache到达一定量时会自动进行落盘。
2、Broker集群模式
根据Broker集群中各个节点间关系的不同,Broker集群可以分为以下几类:
单Master
只有一个broker(其本质上就不能称为集群)。这种方式也只能是在测试时使用,生产环境下不能使用,因为存在单点问题。
多Master
broker集群仅由多个master构成,不存在Slave。同一Topic的各个Queue会平均分布在各个master节点上。
优点:配置简单,单个Master宕机或重启维护对应用无影响,在磁盘配置为RAID10时,即使机器
宕机不可恢复情况下,由于RAID10磁盘非常可靠,消息也不会丢(异步刷盘丢失少量消息,同步
刷盘一条不丢),性能最高;
缺点:单台机器宕机期间,这台机器上未被消费的消息在机器恢复之前不可订阅(不可消费),
消息实时性会受到影响。
以上优点的前提是,这些Master都配置了RAID磁盘阵列。如果没有配置,一旦出现某Master宕
机,则会发生大量消息丢失的情况。
多Master多Slave模式-异步复制
broker集群由多个master构成,每个master又配置了多个slave(在配置了RAID磁盘阵列的情况下,一个master一般配置一个slave即可)。master与slave的关系是主备关系,即master负责处理消息的读写请求,而slave仅负责消息的备份与master宕机后的角色切换。
异步复制即前面所讲的复制策略中的异步复制策略,即消息写入master成功后,master立即向
producer返回成功ACK,无需等待slave同步数据成功。
该模式的最大特点之一是,当master宕机后slave能够自动切换为master。不过由于slave从master的同步具有短暂的延迟(毫秒级),所以当master宕机后,这种异步复制方式可能会存在少量消息的丢失问题。
Slave从Master同步的延迟越短,其可能丢失的消息就越少。
对于Master的RAID磁盘阵列,若使用的也是异步复制策略,同样也存在延迟问题,同样也可能
会丢失消息。但RAID阵列的秘诀是微秒级的(因为是由硬盘支持的),所以其丢失的数据量会
更少。
多Master多Slave模式-同步双写
该模式是多Master多Slave模式的同步复制实现。所谓同步双写,指的是消息写入master成功后,
master会等待slave同步数据成功后才向producer返回成功ACK,即master与slave都要写入成功后才会返回成功ACK,也即双写。
该模式与异步复制模式相比,优点是消息的安全性更高,不存在消息丢失的情况。但单个消息的RT略高,从而导致性能要略低(大约低10%)。
该模式存在一个大的问题:对于目前的版本,Master宕机后,Slave 不会自动切换到Master。
最佳实践
一般会为Master配置RAID10磁盘阵列,然后再为其配置一个Slave。即利用了RAID10磁盘阵列的高效、安全性,又解决了可能会影响订阅的问题。
1)RAID磁盘阵列的效率要高于Master-Slave集群。因为RAID是硬件支持的。也正因为如此,
所以RAID阵列的搭建成本较高。
2)多Master+RAID阵列,与多Master多Slave集群的区别是什么?
多Master+RAID阵列,其仅仅可以保证数据不丢失,即不影响消息写入,但其可能会影响到
消息的订阅。但其执行效率要远高于多Master多Slave集群。
多Master多Slave集群,其不仅可以保证数据不丢失,也不会影响消息写入。其运行效率要低
于多Master+RAID阵列。
六、磁盘阵列RAID(补充)
1、RAID历史
1988 年美国加州大学伯克利分校的 D. A. Patterson 教授等首次在论文 “A Case of Redundant Array of Inexpensive Disks” 中提出了 RAID 概念 ,即廉价冗余磁盘阵列( Redundant Array of Inexpensive Disks )。由于当时大容量磁盘比较昂贵, RAID 的基本思想是将多个容量较小、相对廉价的磁盘进行有机组合,从而以较低的成本获得与昂贵大容量磁盘相当的容量、性能、可靠性。随着磁盘成本和价格的不断降低, “廉价” 已经毫无意义。因此, RAID 咨询委员会( RAID Advisory Board, RAB )决定用“ 独立 ” 替代 “ 廉价 ” ,于时 RAID 变成了独立磁盘冗余阵列( Redundant Array of Independent Disks )。但这仅仅是名称的变化,实质内容没有改变。
内存:32m 6.4G(IBM 10.1G)
2 RAID等级
RAID 这种设计思想很快被业界接纳, RAID 技术作为高性能、高可靠的存储技术,得到了非常广泛的应用。 RAID 主要利用镜像、数据条带和数据校验三种技术来获取高性能、可靠性、容错能力和扩展性,根据对这三种技术的使用策略和组合架构,可以把 RAID 分为不同的等级,以满足不同数据应用的需求。
D. A. Patterson 等的论文中定义了 RAID0 ~ RAID6 原始 RAID 等级。随后存储厂商又不断推出 RAID7、 RAID10、RAID01 、 RAID50 、 RAID53 、 RAID100 等 RAID 等级,但这些并无统一的标准。目前业界与学术界公认的标准是 RAID0 ~ RAID6 ,而在实际应用领域中使用最多的 RAID 等级是 RAID0 、RAID1 、 RAID3 、 RAID5 、 RAID6 和 RAID10。
RAID 每一个等级代表一种实现方法和技术,等级之间并无高低之分。在实际应用中,应当根据用户的数据应用特点,综合考虑可用性、性能和成本来选择合适的 RAID 等级,以及具体的实现方式。
3 关键技术
镜像技术
镜像技术是一种冗余技术,为磁盘提供数据备份功能,防止磁盘发生故障而造成数据丢失。对于 RAID而言,采用镜像技术最典型地的用法就是,同时在磁盘阵列中产生两个完全相同的数据副本,并且分布在两个不同的磁盘上。镜像提供了完全的数据冗余能力,当一个数据副本失效不可用时,外部系统仍可正常访问另一副本,不会对应用系统运行和性能产生影响。而且,镜像不需要额外的计算和校验,故障修复非常快,直接复制即可。镜像技术可以从多个副本进行并发读取数据,提供更高的读 I/O 性能,但不能并行写数据,写多个副本通常会导致一定的 I/O 性能下降。
镜像技术提供了非常高的数据安全性,其代价也是非常昂贵的,需要至少双倍的存储空间。高成本限制了镜像的广泛应用,主要应用于至关重要的数据保护,这种场合下的数据丢失可能会造成非常巨大的损失。
数据条带技术
数据条带化技术是一种自动将 I/O操作负载均衡到多个物理磁盘上的技术。更具体地说就是,将一块连续的数据分成很多小部分并把它们分别存储到不同磁盘上。这就能使多个进程可以并发访问数据的多个不同部分,从而获得最大程度上的 I/O 并行能力,极大地提升性能。
数据校验技术
数据校验技术是指, RAID 要在写入数据的同时进行校验计算,并将得到的校验数据存储在 RAID 成员磁盘中。校验数据可以集中保存在某个磁盘或分散存储在多个不同磁盘中。当其中一部分数据出错时,就可以对剩余数据和校验数据进行反校验计算重建丢失的数据。
数据校验技术相对于镜像技术的优势在于节省大量开销,但由于每次数据读写都要进行大量的校验运算,对计算机的运算速度要求很高,且必须使用硬件 RAID 控制器。在数据重建恢复方面,检验技术比镜像技术复杂得多且慢得多。
4 RAID分类
从实现角度看, RAID 主要分为软 RAID、硬 RAID 以及混合 RAID 三种。
软 RAID
所有功能均有操作系统和 CPU 来完成,没有独立的 RAID 控制处理芯片和 I/O 处理芯片,效率自然最低。
硬 RAID
配备了专门的 RAID 控制处理芯片和 I/O 处理芯片以及阵列缓冲,不占用 CPU 资源。效率很高,但成本也很高。
混合 RAID
具备 RAID 控制处理芯片,但没有专门的I/O 处理芯片,需要 CPU 和驱动程序来完成。性能和成本在软RAID 和硬 RAID 之间。
5 常见RAID等级详解
JBOD

JBOD ,Just a Bunch of Disks,磁盘簇。表示一个没有控制软件提供协调控制的磁盘集合,这是 RAID区别与 JBOD 的主要因素。 JBOD 将多个物理磁盘串联起来,提供一个巨大的逻辑磁盘。
JBOD 的数据存放机制是由第一块磁盘开始按顺序往后存储,当前磁盘存储空间用完后,再依次往后面 的磁盘存储数据。 JBOD 存储性能完全等同于单块磁盘,而且也不提供数据安全保护。
其只是简单提供一种扩展存储空间的机制,JBOD可用存储容量等于所有成员磁盘的存储空间之
和。
JBOD 常指磁盘柜,而不论其是否提供 RAID 功能。不过,JBOD并非官方术语,官方称为Spanning。
本文介绍了RocketMQ的基础概念、发展历程及其系统架构。RocketMQ是一款阿里巴巴开源的消息中间件,具有高性能和高稳定性的特点。文章详细阐述了RocketMQ的组成部分,包括Producer、Consumer、Name Server、Broker等,并对各组件的功能及工作流程进行了说明。
2135

被折叠的 条评论
为什么被折叠?



