240. Search a 2D Matrix II

本文介绍了一种高效的算法,用于在一个m x n的二维矩阵中查找特定值。该矩阵具有每一行从左到右递增排序,每一列从上到下递增排序的特点。文章通过一个具体的例子详细阐述了如何实现这一算法,并给出了一个O(M+N)复杂度的解决方案。

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

  • Integers in each row are sorted in ascending from left to right.
  • Integers in each column are sorted in ascending from top to bottom.

For example,

Consider the following matrix:

[
  [1,   4,  7, 11, 15],
  [2,   5,  8, 12, 19],
  [3,   6,  9, 16, 22],
  [10, 13, 14, 17, 24],
  [18, 21, 23, 26, 30]
]

Given target = 5, return true.

Given target = 20, return false.

First read discussions

http://articles.leetcode.com/searching-2d-sorted-matrix

http://articles.leetcode.com/searching-2d-sorted-matrix-part-ii

https://leetcode.com/discuss/51108/is-theres-a-o-log-m-log-n-solution-i-know-o-n-m-and-o-m-log-n

Solution 1

// O(M + N) Divide and conquer
	public static boolean searchMatrix(int[][] matrix, int target) {
		if (matrix == null || matrix.length < 1 || matrix[0].length < 1) {
			return false;
		}
		int col = matrix[0].length - 1;
		int row = 0;
		while (col >= 0 && row <= matrix.length - 1) {
			if (target == matrix[row][col]) {
				return true;
			} else if (target < matrix[row][col]) {
				col--;
			} else if (target > matrix[row][col]) {
				row++;
			}
		}
		return false;
	}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值