Distinct Primes 打表

本文介绍了如何通过预处理找到前1000个至少包含三个素数的幸运数,并提供了一个实现该功能的代码段。
来源: http://acm.hust.edu.cn:8080/judge/contest/view.action?cid=10907#problem/E

ACM International Collegiate Programming Contest, Asia-Amritapuri Site, 2011

题意:至少包含三个素数的数成为Lucky number,现在让求第n个Lucky number。
思路:由于n很小(1000),因此可以打表。把这1000个数预处理出来,直接输出即可。
代码:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string.h>
using namespace std;

#define CLR(arr,val) memset(arr,val,sizeof(val))
const int N = 100000;
int flag[N],ans[1010];
void init(){
	CLR(flag,0);
	for(int i = 2; i <= sqrt(N + 0.5); ++i){
		if(!flag[i]){
		  for(int j = i * 2; j < N; j += i)
			  flag[j] = 1;
		}
	}
	int K = 1;
	for(int i = 30;;++i){
	  int cnt = 0;
	  if(!flag[i])
		  continue;
	  int s = i;
	  for(int j = 2;j < N;++j){
	     if(flag[j])
			 continue;
		 if(s % j == 0){
		   cnt++;
		   while(s%j == 0)
			   s /= j;
		 }
		 if(cnt >= 3){
		   ans[K++] = i;
		   break;
		 }
	  }
	  if(K > 1001)
		  break;
	}
}
int main(){
	init();
	int numcase;
	scanf("%d",&numcase);
	while(numcase--){
	  int n;
	  scanf("%d",&n);
	  printf("%d\n",ans[n]);
	}
	return 0;
}


(1)普通用户端(全平台) 音乐播放核心体验: 个性化首页:基于 “听歌历史 + 收藏偏好” 展示 “推荐歌单(每日 30 首)、新歌速递、相似曲风推荐”,支持按 “场景(通勤 / 学习 / 运动)” 切换推荐维度。 播放页功能:支持 “无损音质切换、倍速播放(0.5x-2.0x)、定时关闭、歌词逐句滚动”,提供 “沉浸式全屏模式”(隐藏冗余控件,突出歌词与专辑封面)。 多端同步:自动同步 “播放进度、收藏列表、歌单” 至所有登录设备(如手机暂停后,电脑端打开可继续播放)。 音乐发现与管理: 智能搜索:支持 “歌曲名 / 歌手 / 歌词片段” 搜索,提供 “模糊匹配(如输入‘晴天’联想‘周杰伦 - 晴天’)、热门搜索词推荐”,结果按 “热度 / 匹配度” 排序。 歌单管理:创建 “公开 / 私有 / 加密” 歌单,支持 “批量添加歌曲、拖拽排序、一键分享到社交平台”,系统自动生成 “歌单封面(基于歌曲风格配色)”。 音乐分类浏览:按 “曲风(流行 / 摇滚 / 古典)、语言(国语 / 英语 / 日语)、年代(80 后经典 / 2023 新歌)” 分层浏览,每个分类页展示 “TOP50 榜单”。 社交互动功能: 动态广场:查看 “关注的用户 / 音乐人发布的动态(如‘分享新歌感受’)、好友正在听的歌曲”,支持 “点赞 / 评论 / 转发”,可直接点击动态中的歌曲播放。 听歌排行:个人页展示 “本周听歌 TOP10、累计听歌时长”,平台定期生成 “全球 / 好友榜”(如 “好友中你本周听歌时长排名第 3”)。 音乐圈:加入 “特定曲风圈子(如‘古典音乐爱好者’)”,参与 “话题讨论(如‘你心中最经典的钢琴曲’)、线上歌单共创”。 (2)音乐人端(创作者中心) 作品管理: 音乐上传:支持 “无损音频(FLAC/WAV)+ 歌词文件(LRC)+ 专辑封面” 上传,填写 “歌曲信息
{ "id": "cmpl-e759f3d8-78e1-11f0-b2b4-1a85109d8f07", "choices": [ { "finish_reason": "stop", "index": 0, "message": { "content": "<think>\nOkay, so I need to figure out how many whole-number divisors there are for the integer given by the expression $ a(2a + b) - 2a^2 + ab $, where $ a $ and $ b $ are different prime numbers greater than 2. Let me start by simplifying the expression step by step.\n\nFirst, let me write down the expression again to make sure I have it right: $ a(2a + b) - 2a^2 + ab $. Let me expand the first term, which is $ a(2a + b) $. If I distribute the $ a $, that becomes $ 2a^2 + ab $. So substituting that back into the original expression, we have:\n\n$ 2a^2 + ab - 2a^2 + ab $.\n\nNow let me combine like terms. The $ 2a^2 $ and $ -2a^2 $ cancel each other out, right? So that leaves me with $ ab + ab $, which is $ 2ab $. So the entire expression simplifies to $ 2ab $. \n\nWait, so the problem is asking for the number of whole-number divisors of $ 2ab $, where $ a $ and $ b $ are different primes greater than 2. Let me confirm that I simplified correctly. Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nExpanding $ a(2a + b) $: $ 2a^2 + ab $. Then subtract $ 2a^2 $, so $ 2a^2 + ab - 2a^2 = ab $. Then add $ ab $, so $ ab + ab = 2ab $. Yes, that seems right. So the expression simplifies to $ 2ab $.\n\nAlright, so now I need to find the number of positive divisors of $ 2ab $. Since $ a $ and $ b $ are primes greater than 2, they are both odd primes. Let me recall that the number of divisors of a number is found by taking its prime factorization, adding one to each of the exponents, and multiplying those together.\n\nSo first, let me write the prime factorization of $ 2ab $. Since 2 is a prime number, and $ a $ and $ b $ are different primes, all three primes are distinct. Therefore, the prime factors of $ 2ab $ are 2, $ a $, and $ b $. Each of these primes has an exponent of 1 in the factorization. So the prime factorization is $ 2^1 \\times a^1 \\times b^1 $.\n\nTo find the number of divisors, I take each exponent (which are all 1s), add 1 to them, and multiply. That would be $ (1 + 1)(1 + 1)(1 + 1) = 2 \\times 2 \\times 2 = 8 $. Therefore, there are 8 positive divisors.\n\nBut let me verify this with an example to make sure I haven't made a mistake. Let me pick specific primes for $ a $ and $ b $. Let's take $ a = 3 $ and $ b = 5 $, which are both primes greater than 2 and different.\n\nCalculating $ 2ab $: $ 2 \\times 3 \\times 5 = 30 $. Now, the divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30. That's 8 divisors. Yep, that matches the calculation. Let me try another example to be safe. Let me take $ a = 5 $, $ b = 7 $. Then $ 2ab = 2 \\times 5 \\times 7 = 70 $. Divisors of 70: 1, 2, 5, 7, 10, 14, 35, 70. Again, 8 divisors. Okay, so that seems consistent.\n\nBut let me think again if there's any possibility that 2 could be equal to $ a $ or $ b $. However, the problem states that $ a $ and $ b $ are primes greater than 2, so they are odd primes. Therefore, 2 is not among them. Therefore, 2, $ a $, and $ b $ are distinct primes. Therefore, the prime factorization is indeed three distinct primes each to the first power, leading to 2×2×2=8 divisors.\n\nBut let me check if there's a case where maybe $ a $ or $ b $ is 2. But the problem says they are greater than 2, so they can't be. Therefore, my reasoning holds.\n\nTherefore, the number of whole-number divisors is 8. Therefore, the answer is 8, which in boxed form is \\boxed{8}.\n\nWait, but let me just check once more. Suppose someone might think that maybe the original expression simplifies differently? Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nFirst term: $ a(2a + b) = 2a^2 + ab $.\n\nSubtracting $ 2a^2 $: $ 2a^2 + ab - 2a^2 = ab $.\n\nAdding $ ab $: $ ab + ab = 2ab $. Yes, that's correct. So the expression simplifies to 2ab. So no issues there.\n\nAlternatively, maybe someone might misread the original problem? Let me check again. The problem says: \"the integer $ a(2a + b) - 2a^2 + ab $\". So yes, that's how it's written. So the steps are correct.\n\nTherefore, I think my answer is correct. The number of divisors is 8.\n\n**Final Answer**\n\\boxed{8}\n</think>\n\nWe are given an expression involving two distinct prime numbers $ a $ and $ b $, both greater than 2, and asked to find the number of whole-number divisors of the integer:\n\n$$\na(2a + b) - 2a^2 + ab\n$$\n\n---\n\n### Step 1: Simplify the Expression\n\nStart by expanding the first term:\n\n$$\na(2a + b) = 2a^2 + ab\n$$\n\nNow substitute this back into the full expression:\n\n$$\n2a^2 + ab - 2a^2 + ab\n$$\n\nSimplify by combining like terms:\n\n- $ 2a^2 - 2a^2 = 0 $\n- $ ab + ab = 2ab $\n\nSo the entire expression simplifies to:\n\n$$\n2ab\n$$\n\n---\n\n### Step 2: Prime Factorization of $ 2ab $\n\nSince $ a $ and $ b $ are distinct prime numbers greater than 2, and 2 is also a prime, the expression $ 2ab $ is the product of three **distinct** primes:\n\n$$\n2ab = 2^1 \\cdot a^1 \\cdot b^1\n$$\n\n---\n\n### Step 3: Count the Number of Divisors\n\nThe number of positive divisors of a number is determined by taking the product of one more than each exponent in its prime factorization.\n\nHere, the exponents are all 1:\n\n$$\n(1 + 1)(1 + 1)(1 + 1) = 2 \\cdot 2 \\cdot 2 = 8\n$$\n\n---\n\n### Final Answer\n\n$$\n\\boxed{8}\n$$", "role": "assistant", "reasoning_content": "" } } ], "created": 1755157209, "model": "Qwen3-32B", "object": "chat.completion", "usage": { "completion_tokens": 1627, "prompt_tokens": 68, "total_tokens": 1695 }, "model_spec": { "api_url": "http://0.0.0.0:9009/v1/chat/completions", "model_id": "Qwen3-32B", "api_key": "EMPTY" }, "answer_id": "answer-1a07ae97260436f698e63d4620d7cff0", "subset_name": "default", "raw_input": { "problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json" }, "origin_prompt": { "data": [ "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?\nPlease reason step by step, and put your final answer within \\boxed{}." ], "system_prompt": null, "raw_input": { "problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json" }, "index": 0 } } 如何判断该题是否回答正确,提取哪个参数核对
08-16
<think>首先,用户的问题是关于如何判断一个题目是否回答正确,以及提取哪个参数来核对。用户提供了一个JSON对象,其中包含了题目的详细信息、答案和模型的输出。 从JSON对象中,我可以看到以下关键部分: - "raw_input":包含原始问题信息,如问题描述、解决方案、正确答案等。 - "problem":题目描述。 - "solution":官方解决方案。 - "answer":正确答案,这里是"8"。 - "message":包含模型的输出内容。 - "content":模型生成的回答,其中包含推理过程和最终答案。 用户的问题是:如何判断该题是否回答正确,以及提取哪个参数核对。 步骤: 1. **提取正确答案**:从JSON的"raw_input"部分,可以提取"answer"字段。在这个例子中,"answer"是"8"。 2. **提取模型生成的答案**:从"message"的"content"中,模型在推理后给出了最终答案,格式为"\boxed{8}"。在LaTeX中,\boxed{}用于表示最终答案。 3. **比较答案**:将模型生成的答案与正确答案进行比较。如果匹配,则回答正确;否则,不正确。 在这个具体的例子中: - 正确答案是"8"。 - 模型输出中,有"\boxed{8}",这表示模型给出的答案是8。 - 因此,答案是匹配的,该题回答正确。 为了通用化,我需要编写一个方法来检查任何类似问题: - 从JSON中解析"raw_input.answer"获取正确答案。 - 从"message.content"中提取\boxed{}内的内容。 - 比较两者是否相等。 在代码实现中,可以使用正则表达式来提取\boxed{}中的内容。 现在,用户要求我以编程专家的身份给出解决方案,包括代码和解释。代码应该用Markdown格式包裹。 最后,我需要提出相关问题,格式为: §§相关问题§§: 1. ··· 2. ··· 3. ··· 4. ··· 基于用户提供的example,回答应该包括: - 回答问题:解释如何判断正确性。 - 给出代码:实现答案提取和比较。 - 解释代码。 - 然后提出相关问题。 代码示例(Python): - 解析JSON对象。 - 提取正确答案。 - 提取模型生成的答案(从\boxed{}中)。 - 比较两者。 假设输入是给定的JSON对象。 代码实现: ```python import json import re # 假设json_data是提供的JSON对象 json_data = { "id": "cmpl-e759f3d8-78e1-11f0-b2b4-1a85109d8f07", # ... 其他字段 "raw_input": { "problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", # ... 其他字段 }, "choices": [ { "message": { "content": "内容包含推理和\\boxed{8}" } } ] } def check_answer_correctness(json_data): # 提取正确答案 correct_answer = json_data["raw_input"]["answer"] # 提取模型生成的答案内容 # 假设只有一个choice,取第一个 model_output = json_data["choices"][0]["message"]["content"] # 使用正则表达式提取\boxed{}中的内容 # 注意:\boxed可能包含LaTeX,所以需要处理转义 # 模式:r'\\boxed\{([^{}]*)\}' pattern = r'\\boxed\{([^{}]*)\}' match = re.search(pattern, model_output) if match: model_answer = match.group(1) else: model_answer = None # 比较答案 if model_answer == correct_answer: return True else: return False # 测试 is_correct = check_answer_correctness(json_data) print(f"Is the answer correct? {is_correct}") ``` 解释代码: 1. 函数`check_answer_correctness`接受JSON数据作为输入。 2. 从`json_data["raw_input"]["answer"]`提取正确答案。 3. 从`json_data["choices"][0]["message"]["content"]`提取模型输出内容。 4. 使用正则表达式`r'\\boxed\{([^{}]*)\}'`搜索`\boxed{}`模式,并提取其中的内容。 5. 比较提取的模型答案和正确答案,如果相等则返回True,否则False。 注意:正则表达式中使用双反斜杠是因为在Python字符串中反斜杠需要转义。模式`r'\\boxed\{([^{}]*)\}'`匹配"\boxed{"后跟任意非大括号字符(捕获组),然后"}". 在提供的JSON中,模型输出确实有"\boxed{8}",所以提取的模型答案是"8",与正确答案"8"匹配。 相关问题: 基于这个任务,我可以提出以下相关问题: 1. 如何处理多个\boxed{}的情况? 2. 如果答案不是数字而是表达式,如何比较? 3. 如何扩展这个方法处理多个choices(如多个模型输出)? 4. 如果JSON结构不同,如何调整解析? 按照格式: §§相关问题§§: 1. 如何处理当模型输出中包含多个\boxed{}命令时? 2. 如果正确答案是一个数学表达式(如分数或根号),如何比较它与模型答案? 3. 如何修改代码以处理JSON中包含多个choices(例如,多个模型生成的结果)? 4. 如果JSON中没有"raw_input"字段,而是其他字段存储答案,应如何调整?</think>要判断该题是否回答正确,需要比较模型生成的答案与正确答案是否一致。具体步骤如下: 1. **提取正确答案**:从JSON的`raw_input.answer`字段获取正确答案(本例中为`"8"`)。 2. **提取模型生成的答案**:从模型输出的`message.content`字段中,使用正则表达式提取`\boxed{}`内的内容(本例中为`"8"`)。 3. **比较答案**:若两者相同,则回答正确;否则错误。 以下是Python代码实现,包含详细注释: ```python import json import re def check_answer_correctness(json_data): """ 检查模型答案是否正确 :param json_data: 包含问题、模型输出和正确答案的JSON对象 :return: True(正确)或False(错误) """ # 步骤1: 从raw_input.answer提取正确答案 correct_answer = json_data["raw_input"]["answer"] # 本例中为字符串"8" # 步骤2: 从模型输出中提取\boxed{}内的答案 model_output = json_data["choices"][0]["message"]["content"] # 使用正则表达式匹配\boxed{}格式(注意转义字符) # 模式说明: r'\\boxed\{([^{}]*)\}' # - \\boxed: 匹配字符串"\boxed" # - \{ 和 \}: 匹配大括号 # - ([^{}]*): 捕获组,匹配大括号内任意非大括号字符(即答案内容) pattern = r'\\boxed\{([^{}]*)\}' match = re.search(pattern, model_output) if match: model_answer = match.group(1) # 提取捕获组内容 else: model_answer = None # 未找到\boxed{} # 步骤3: 比较答案 return model_answer == correct_answer # 示例JSON数据(基于用户提供的数据结构) sample_json = { "raw_input": { "answer": "8" # 正确答案 }, "choices": [ { "message": { "content": "最终答案: \\boxed{8}" # 模型输出(简化示例) } } ] } # 测试函数 is_correct = check_answer_correctness(sample_json) print(f"答案是否正确? {is_correct}") # 输出: 答案是否正确? True ``` ### 代码解释: 1. **提取正确答案**: - 通过`json_data["raw_input"]["answer"]`直接访问JSON中存储的正确答案(本例为`"8"`)。 2. **提取模型答案**: - 模型输出存储在`json_data["choices"][0]["message"]["content"]`。 - 使用正则表达式`r'\\boxed\{([^{}]*)\}'`匹配`\boxed{}`格式: - `\\boxed`:匹配字符串`\boxed`(Python中反斜杠需转义)。 - `\{`和`\}`:匹配字面大括号。 - `([^{}]*)`:捕获组,匹配大括号内任意非大括号字符(即答案内容)。 - 若匹配成功,`match.group(1)`返回答案;否则返回`None`。 3. **比较答案**: - 直接比较模型答案与正确答案的字符串是否相等。 ### 注意事项: - **正则表达式适配**:若答案含大括号(如`\boxed{\frac{1}{2}}`),需调整正则式为`r'\\boxed\{(.*?)\}'`并启用非贪婪匹配。 - **错误处理**:未匹配到`\boxed{}`时,可返回`False`或抛出异常。 - **数据类型**:本例假设答案为字符串,若答案为数字需显式转换(如`int(model_answer)`)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值