[CodeChef FEB15]Payton numbers(CUSTPRIM)解题报告

本文探讨了一种特殊的三元组乘法运算及其应用,通过定义乘法、零元素、单位元和质数的概念,实现了一个算法来判断给定的三元组是否为质数。文中详细介绍了运算规则和判断过程,并提供了代码实现。

题目

(翻译来自洪华敦)
定义三元组的乘法
def multiply((a1,b1,c1), (a2,b2,c2)):
s = (a1a2 + b1b2 + c1c2) + (a1b2 + b1a2) + (c1 + c2)
t = floor[s/2] + 16(c1 + c2) - c1c2
A = (t - 2(a1b2 + b1a2) - (a1c2 + c1a2) + 33(a1 + a2)+ (b1b2 - a1a2))
B = (t - 5(a1b2 + b1a2) - (c1b2 + b1c2) + 33(b1 + b2)+ (2b1b2 + 4a1a2))
if s is even: return (A-540,B-540,24)
else: return (A-533,B-533,11)
定义zero:若x*任何y=0,则称x是zero
定义单位元,若x*任何y=y,则称x是单位元
定义质数,若x不是zero且不能分解成两个非单位元的乘积,则称x是质数
给定一个三元组,问他是不是质数

题解

CC上有自带的(英文)题解:
还有一篇中文翻译:
翻译有遗漏之处,以原文为准。反正我就是看CC上的英文题解看懂的。
解法简直出(sang)神(xin)入(bing)化(kuang),大家还是去看原文吧……
(没错这真的是一篇解题报告)

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long LL;
LL realmod(LL a,LL m){
	a%=m;
	if(a<0) a+=m;
	return a;
}
inline LL quickmul(LL x,LL y,LL MOD){
	x=realmod(x,MOD),y=realmod(y,MOD);
	return ((x*y-(LL)(((long double)x*y+0.5)/MOD)*MOD)%MOD+MOD)%MOD;
}
LL quickpow(LL a,LL n,LL M){
	a=realmod(a,M);
	LL ans=1;
	while(n){
		if(n&1) ans=quickmul(ans,a,M);
		a=quickmul(a,a,M);
		n>>=1;
	}
	return ans;
}
LL Legendre_symbol(LL a,LL p){//p是奇素数 
	//1代表a是平方剩余,-1代表a不是平方剩余,0代表a=0 
	//a^((p-1)/2)
	a=realmod(a,p);
	LL flg=quickpow(a,(p-1)/2,p);
	if(flg==0||flg==1) return flg;
	if(flg==p-1) return -1;
}
bool Rabin_Miller(LL n,LL p){//合数返回0
	if(n==2) return true;
	if(n==1||(n&1)==0) return false;
	LL d=n-1;
	while(!(d&1)) d>>=1;
	LL m=quickpow(p,d,n);
	if(m==1) return true;
	while(d<n){
		if(m==n-1) return true;
		d<<=1;
		m=quickmul(m,m,n);
	}
	return false;
}
bool is_prime(LL n){//素数返回1
	if(n==0||n==1) return false;
	static int rm_primes[]={2,3,5,7,11,13,17,19,23,29,31};
	for(int i=0;i<11;i++){
		if(rm_primes[i]==n) return true;
		if(!Rabin_Miller(n,rm_primes[i])) return false;
	}
	return true;
}
bool test(LL a,LL b,LL c){
	LL A=33-2*a-c;
	LL B=b-a;
	if(B==0){
		if(A==-2||A==2) return true;
		if(is_prime(abs(A))){
			if(Legendre_symbol(-11,abs(A))==-1) return true;
		}
		return false;
	}
	else{
		return is_prime(A*A+A*B+3*B*B);
	}
	return false;
}
int main(void){
	int T;
	LL a,b,c;
	scanf("%d",&T);
	while(T--){
		scanf("%lld%lld%lld",&a,&b,&c);
		if(test(a,b,c)) printf("PRIME\n");
		else printf("NOT PRIME\n");
	}
	return 0;
}


本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值