引言
人脸识别技术在许多领域都有广泛的应用,如安全监控、门禁系统、智能设备等。本文将介绍如何使用Python实现一个人脸识别系统,并将其封装为一个类库。我们将逐步扩展和完善这个类库,增加代码优化、人脸照片存储到数据库、对特殊场景(如戴口罩、眼镜)的优化,以及灵活的识别距离设置。
1. 基本人脸识别实现
1.1 安装依赖
首先,我们需要安装一些必要的库:
pip install face_recognition opencv-python psycopg2-binary dlib
1.2 基本类库实现
我们创建一个 FaceRecognition
类,实现基本的人脸识别功能。
import cv2
import face_recognition
import numpy as np
import psycopg2
from psycopg2 import sql
from PIL import Image, ImageDraw
import configparser
class FaceRecognition:
def __init__(self, db_config, config_file='config.ini'):
"""
初始化FaceRecognition类。
:param db_config: 数据库配置
:param config_file: 配置文件路径
"""
self.db_config = db_config
self.config = configparser.ConfigParser()
self.config.read(config_file)
self.tolerance = float(self.config.get('FaceRecognition', 'tolerance'))
self.model = self.config.get('FaceRecognition', 'model')
self.known_face_encodings, self.known_face_names, self.tolerances = self.load_faces_from_db()
def load_faces_from_db(self):
"""
从数据库加载已知人脸信息。
:return: 已知人脸的编码、名称和识别距离
"""
known_face_encodings = []
known_face_names = []
tolerances = []
conn = psycopg2.connect(**self.db_config)
cursor = conn.cursor()
cursor.execute("SELECT name, encoding, tolerance FROM faces")
rows = cursor.fetchall()
for row in rows:
name, encoding_str, tolerance = row
encoding = np.fromstring(encoding_str, dtype=float, sep=' ')
known_face_encodings.append(encoding)
known_face_names.append(name)
tolerances.append(tolerance)
cursor.close()
conn.close()
return known_face_encodings, known_face_names, tolerances
def add_face_to_db(self, image_path, name, tolerance=None):
"""
将新的人脸信息添加到数据库。
:param image_path: 人脸图像的路径
:param name: 人脸的名称
:param tolerance: 识别距离
"""
if tolerance is None:
tolerance = self.tolerance
# 加载图片
image = face_recognition.load_image_file(image_path)
# 编码人脸
face_encoding = face_recognition.face_encodings(image)[0]
encoding_str = ' '.join(map(str, face_encoding))
conn = psycopg2.connect(**self.db_config)
cursor = conn.cursor()
query = sql.SQL("INSERT INTO faces (name, encoding, image_path, tolerance) VALUES (%s, %s, %s, %s)")
cursor.execute(query, (name, encoding_str, image_path, tolerance))
conn.commit()
cursor.close()
conn.close()
def real_time_face_recognition(self, camera_index=0):
"""
实现实时人脸识别。
:param camera_index: 摄像头索引
"""
# 打开摄像头
video_capture = cv2.VideoCapture(camera_index)
while True:
# 读取一帧
ret, frame = video_capture.read()
if not ret:
continue
# 将帧转换为RGB
rgb_frame = frame[:, :, ::-1]
# 检测人脸位置
face_locations = face_recognition.face_locations(rgb_frame, model=self.model)
if not face_locations:
continue
# 编码人脸
face_encodings = face_recognition.face_encodings(rgb_frame, face_locations)
# 遍历检测到的人脸
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
name = "Unknown"
min_distance = float('inf')
best_match_index = -1
for i, (known_encoding, known_name, known_tolerance) in enumerate(zip(self.known_face_encodings, self.known_face_names, self.tolerances)):
# 计算欧氏距离
distance = face_recognition.face_distance([known_encoding], face_encoding)[0]
if distance < min_distance and distance <= known_tolerance:
min_distance = distance
name = known_name
best_match_index = i
# 在帧上绘制矩形和标签
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# 显示结果
cv2.imshow('Video', frame)
# 按q键退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头
video_capture.release()
cv2.destroyAllWindows()
def train_model(self, training_data):
"""
训练人脸识别模型。
:param training_data: 训练数据,格式为 [(image_path, name, tolerance)]
"""
for image_path, name, tolerance in training_data:
self.add_face_to_db(image_path, name, tolerance)
# 示例用法
if __name__ == "__main__":
# 数据库配置
db_config = {
'dbname': 'your_dbname',
'user': 'your_user',
'password': 'your_password',
'host': 'localhost',
'port': '5432'
}
# 初始化FaceRecognition类
face_recognition = FaceRecognition(db_config)
# 添加新人脸
face_recognition.add_face_to_db('path/to/new_face.jpg', 'New Face', tolerance=0.6)
# 启动实时人脸识别
face_recognition.real_time_face_recognition(camera_index=0)
# 训练模型
training_data = [
('path/to/training_face_1.jpg', 'Training Face 1', 0.6),
('path/to/training_face_2.jpg', 'Training Face 2', 0.5),
# 添加更多训练数据
]
face_recognition.train_model(training_data)
2. 代码优化
2.1 优化加载和编码已知人脸
我们将优化 load_and_encode_faces
方法,使其更高效且更易维护。