一、背景
互联网相关业务相对于传统场景普遍存在高并发高流量的情况,因此在实际业务场景中,都会通过在业务和存储中间添加缓存层来减轻数据库的压力。使用缓存主要是为了提升响应速度和并发量,并减轻数据库的访问压力。在实际使用过程中需要解决缓存穿透、缓存击穿和缓存雪崩的发生,并且需要考虑缓存与数据库数据一致性问题。
二、缓存分类
缓存根据保存的位置不同分为本地缓存和分布式缓存。本地缓存就是保存在服务所在机器上,占用jvm内存空间;分布式缓存就是保存在独立的服务上如Redis集群上。
1.本地缓存
将一些只读基础数据进行本地缓存减轻数据库访问压力加快程序访问速度。这类数据特点变更不频繁,对缓存与数据库中数据不一致容忍度较高。服务启动时进行本地缓存加载,可以采用定时刷新缓存或者监听消息的方式重新加载缓存来保证本地缓存数据的实时性。
- 缺点:占用本地内存,数据量受限;每个服务都需要保存,副本较多;服务启动时需要加载,可能导致启动时间较长;
- 优点:本地缓存访问速度更快,独立缓存不互相影响
2.分布式缓存
将非只读数据保存在分布式缓存集群中可以提高服务的灵活度,提升响应速度提高并发量,这些数据基本都是程序运行过程中加载到缓存并在一段时间后会从缓存卸载。
- 缺点:需要部署额外缓存集群;需要提供多副本防止单点故障;业务集群共用,缓存污染容易导致整个业务不可用;
- 优点:不占用本地内存,数据量不受限制;与业务集群结偶,缓存保存在缓存集群中;服务运行过程中加载和卸载,不影响服务启动耗时;
三、缓存读写模式
经典的缓存+数据库读取 Cache Aside Pattern模型。
1.读请求
- 读的时候先从缓存读取
- 如果缓存中不存在,则需要从数据库中读取
- 数据取出后需要写入到缓存中
2.写请求
- 更新时需要先更新数据库
- 然后删除缓存
四、缓存穿透
缓存穿透是指查询了一个在数据库和缓存中都不存在的数据。由经典 Cache Aside Patte