一、stl
1、顶点数据
typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> stl_vertex;
typedef Eigen::Matrix<int, 3, 1, Eigen::DontAlign> stl_triangle_vertex_indices;
stl_vertex 为顶点数据,是一个3*1的矩阵,数据类型为float,是一个3列1行的向量,3列分别表示x y z轴的坐标。
stl_triangle_vertex_indices 为三角型顶点索引,也是一个3*1的矩阵,数据类型为int。
用stl_triangle_vertex_indices定义一个变量,就会有三个顶点数据,这三个数据就可以组合成一个三角面片,三角面片是三维模型的基础,所有的模型都是由三角面片组成的。
2、索引三角集
struct indexed_triangle_set
{
indexed_triangle_set(std::vector<stl_triangle_vertex_indices> indices_,
std::vector<stl_vertex> vertices_) :indices(indices_), vertices(vertices_) {
properties.resize(indices_.size());
}
indexed_triangle_set() {}
void clear() { indices.clear(); vertices.clear(); properties.clear(); }
size_t memsize() const {
return sizeof(*this) + (sizeof(stl_triangle_vertex_indices) + sizeof(FaceProperty)) * indices.size() + sizeof(stl_vertex) * vertices.size();
}
std::vector<stl_triangle_vertex_indices> indices;
std::vector<stl_vertex> vertices;
std::vector<FaceProperty> properties;
bool empty() const { return indices.empty() || vertices.empty(); }
stl_vertex get_vertex(int facet_idx, int vertex_idx) const{
return vertices[indices[facet_idx][vertex_idx]];
}
float facet_area(int facet_idx) const {
return std::abs((get_vertex(facet_idx, 0) - get_vertex(facet_idx, 1))
.cross(get_vertex(facet_idx, 0) - get_vertex(facet_idx, 2)).norm()) / 2;
}
FaceProperty& get_property(int face_idx) {
if (properties.size() != indices.size()) {
properties.clear();
properties.resize(indices.size());
}
return properties[face_idx];
}
};
vertices表示所有顶点数据的集合;indices表示所有三角面片的集合。
函数get_vectex:根据三角面片的索引和顶点索引,获取顶点坐标。
函数 facet_area:用来计算某个三角面片的面积(叉积的模长除以2),可以参考:https://zhuanlan.zhihu.com/p/717102351 文章来理解。
3、三角网格
struct TriangleMeshStats {
// Mesh metrics.
uint32_t number_of_facets = 0;
stl_vertex max = stl_vertex::Zero();
stl_vertex min = stl_vertex::Zero();
stl_vertex size = stl_vertex::Zero();
float volume = -1.f;
int number_of_parts = 0;
// Mesh errors, remaining.
int open_edges = 0;
// Mesh errors, fixed.
RepairedMeshErrors repaired_errors;
void clear() { *this = TriangleMeshStats(); }
TriangleMeshStats merge(const TriangleMeshStats &rhs) const {
if (this->number_of_facets == 0)
return rhs;
else if (rhs.number_of_facets == 0)
return *this;
else {
TriangleMeshStats out;
out.number_of_facets = this->number_of_facets + rhs.number_of_facets;
out.min = this->min.cwiseMin(rhs.min);
out.max = this->max.cwiseMax(rhs.max);
out.size = out.max - out.min;
out.number_of_parts = this->number_of_parts + rhs.number_of_parts;
out.open_edges = this->open_edges + rhs.open_edges;
out.volume = this->volume + rhs.volume;
out.repaired_errors.merge(rhs.repaired_errors);
return out;
}
}
bool manifold() const { return open_edges == 0; }
bool repaired() const { return repaired_errors.repaired(); }
};
class TriangleMesh
{
public:
TriangleMesh() = default;
TriangleMesh(const std::vector<Vec3f> &vertices, const std::vector<Vec3i32> &faces);
TriangleMesh(std::vector<Vec3f> &&vertices, const std::vector<Vec3i32> &&faces);
explicit TriangleMesh(const indexed_triangle_set &M);
explicit TriangleMesh(indexed_triangle_set &&M, const RepairedMeshErrors& repaired_errors = RepairedMeshErrors());
void clear() { this->its.clear(); this->m_stats.clear(); }
bool from_stl(stl_file& stl, bool repair = true);
bool ReadSTLFile(const char *input_file, bool repair = true, ImportstlProgressFn stlFn = nullptr, int custom_header_length = 80);
bool write_ascii(const char* output_file);
bool write_binary(const char* output_file);
float volume();
void WriteOBJFile(const char* output_file) const;
void scale(float factor);
void scale(const Vec3f &versor);
void translate(float x, float y, float z);
void translate(const Vec3f &displacement);
void rotate(float angle, const Axis &axis);
void rotate(float angle, const Vec3d& axis);
void rotate_x(float angle) { this->rotate(angle, X); }
void rotate_y(float angle) { this->rotate(angle, Y); }
void rotate_z(float angle) { this->rotate(angle, Z); }
void mirror(const Axis axis);
void mirror_x() { this->mirror(X); }
void mirror_y() { this->mirror(Y); }
void mirror_z() { this->mirror(Z); }
void transform(const Transform3d& t, bool fix_left_handed = false);
void transform(const Matrix3d& t, bool fix_left_handed = false);
// Flip triangles, negate volume.
void flip_triangles();
void align_to_origin();
void rotate(double angle, Point* center);
std::vector<TriangleMesh> split() const;
void merge(const TriangleMesh &mesh);
ExPolygons horizontal_projection() const;
// 2D convex hull of a 3D mesh projected into the Z=0 plane.
Polygon convex_hull() const;
BoundingBoxf3 bounding_box() const;
// Returns the bbox of this TriangleMesh transformed by the given transformation
BoundingBoxf3 transformed_bounding_box(const Transform3d &trafo) const;
// Variant returning the bbox of the part of this TriangleMesh above the given world_min_z
BoundingBoxf3 transformed_bounding_box(const Transform3d& trafo, double world_min_z) const;
// Return the size of the mesh in coordinates.
Vec3d size() const { return m_stats.size.cast<double>(); }
/// Return the center of the related bounding box.
Vec3d center() const { return this->bounding_box().center(); }
// Returns the convex hull of this TriangleMesh
TriangleMesh convex_hull_3d() const;
// Slice this mesh at the provided Z levels and return the vector
std::vector<ExPolygons> slice(const std::vector<double>& z) const;
size_t facets_count() const { assert(m_stats.number_of_facets == this->its.indices.size()); return m_stats.number_of_facets; }
bool empty() const { return this->facets_count() == 0; }
bool repaired() const;
bool is_splittable() const;
// Estimate of the memory occupied by this structure, important for keeping an eye on the Undo / Redo stack allocation.
size_t memsize() const;
// Used by the Undo / Redo stack, legacy interface. As of now there is nothing cached at TriangleMesh,
// but we may decide to cache some data in the future (for example normals), thus we keep the interface in place.
// Release optional data from the mesh if the object is on the Undo / Redo stack only. Returns the amount of memory released.
size_t release_optional() { return 0; }
// Restore optional data possibly released by release_optional().
void restore_optional() {}
const TriangleMeshStats& stats() const { return m_stats; }
void set_init_shift(const Vec3d &offset) { m_init_shift = offset; }
Vec3d get_init_shift() const { return m_init_shift; }
indexed_triangle_set its;
private:
TriangleMeshStats m_stats;
Vec3d m_init_shift {0.0, 0.0, 0.0};
};
变量its: 保存原始的索引三角集
变量m_stats:三角网格统计,保存三角面片数量、体积、边框等。
3.1 函数its_volume:计算索引三角集体积
float its_volume(const indexed_triangle_set &its)
{
if (its.empty()) return 0.;
// Choose a point, any point as the reference.
auto p0 = its.vertices.front();
float volume = 0.f;
for (size_t i = 0; i < its.indices.size(); ++ i) {
// Do dot product to get distance from point to plane.
its_triangle triangle = its_triangle_vertices(its, i);
Vec3f U = triangle[1] - triangle[0];
Vec3f V = triangle[2] - triangle[0];
Vec3f C = U.cross(V);
Vec3f normal = C.normalized();
float area = 0.5 * C.norm();
float height = normal.dot(triangle[0] - p0);
volume += (area * height) / 3.0f;
}
return volume;
}
以p0做为一个起始点,计算与其它三角型组合起来的三角锥的面积之和。
循环中:area就是计算三角的面积,normal.dot(),是一个点积即内积,内积的几何意义为向量(triangle[0]-p0)在normal方向上的投影,即三角锥的高。最后三角锥的体积为1/3 s h
3.2 顶点索引到面片索引
struct VertexFaceIndex
{
public:
using iterator = std::vector<size_t>::const_iterator;
VertexFaceIndex(const indexed_triangle_set &its) { this->create(its); }
VertexFaceIndex() {}
void create(const indexed_triangle_set &its);
void clear() { m_vertex_to_face_start.clear(); m_vertex_faces_all.clear(); }
// Iterators of face indices incident with the input vertex_id.
iterator begin(size_t vertex_id) const throw() { return m_vertex_faces_all.begin() + m_vertex_to_face_start[vertex_id]; }
iterator end (size_t vertex_id) const throw() { return m_vertex_faces_all.begin() + m_vertex_to_face_start[vertex_id + 1]; }
// Vertex incidence.
size_t count(size_t vertex_id) const throw() { return m_vertex_to_face_start[vertex_id + 1] - m_vertex_to_face_start[vertex_id]; }
const Range<iterator> operator[](size_t vertex_id) const { return {begin(vertex_id), end(vertex_id)}; }
private:
std::vector<size_t> m_vertex_to_face_start;
std::vector<size_t> m_vertex_faces_all;
};
void VertexFaceIndex::create(const indexed_triangle_set &its)
{
m_vertex_to_face_start.assign(its.vertices.size() + 1, 0);
// 1) Calculate vertex incidence by scatter.
for (auto &face : its.indices) {
++ m_vertex_to_face_start[face(0) + 1];
++ m_vertex_to_face_start[face(1) + 1];
++ m_vertex_to_face_start[face(2) + 1];
}
// 2) Prefix sum to calculate offsets to m_vertex_faces_all.
for (size_t i = 2; i < m_vertex_to_face_start.size(); ++ i)
m_vertex_to_face_start[i] += m_vertex_to_face_start[i - 1];
// 3) Scatter indices of faces incident to a vertex into m_vertex_faces_all.
m_vertex_faces_all.assign(m_vertex_to_face_start.back(), 0);
for (size_t face_idx = 0; face_idx < its.indices.size(); ++ face_idx) {
auto &face = its.indices[face_idx];
for (int i = 0; i < 3; ++ i)
m_vertex_faces_all[m_vertex_to_face_start[face(i)] ++] = face_idx;
}
// 4) The previous loop modified m_vertex_to_face_start. Revert the change.
for (auto i = int(m_vertex_to_face_start.size()) - 1; i > 0; -- i)
m_vertex_to_face_start[i] = m_vertex_to_face_start[i - 1];
m_vertex_to_face_start.front() = 0;
}
函数create中,使用散列聚集算法,将面索引散列到m_vertex_faces_all中,将顶点索引到面索引的值保存m_vertex_to_face_start中。
1、设置顶点到面起始位置变量m_vertex_to_face_start的空间大小为顶点数量+1。
2、遍历三角面片数组,将各个顶点出现的次数到m_vertex_to_face_start中。
3、将各个顶点出现的次数累加到后一个位置中,这样在最末尾的变量中可以得到所有顶点出现的次数。
4、面索引散列表的大小为所有顶点出现的次数和。
5、将面索引写到m_vertex_faces_all中。
## 具体例子说明
假设我们有一个简单的三角形网格,包含4个顶点和2个三角形面:
### 网格数据
- 顶点数组 : vertices = [V0, V1, V2, V3] (共4个顶点)
- 面索引数组 :
- face0 = [0, 1, 2] (三角形使用顶点V0、V1、V2)
- face1 = [1, 2, 3] (三角形使用顶点V1、V2、V3)
### 分配过程分步演示 步骤1:前缀和计算完成后
经过前面的散射统计和前缀和计算, m_vertex_to_face_start 数组的状态为:
顶点索引: 0 1 2 3 4
值: 0 1 3 5 6
这表示:
- 顶点V0:有1个面引用,在全局数组中的起始位置是0
- 顶点V1:有2个面引用,起始位置是1
- 顶点V2:有2个面引用,起始位置是3
- 顶点V3:有1个面引用,起始位置是5
- 最后一个值6表示总共需要存储6个面索引
步骤2:初始化全局数组
m_vertex_faces_all.assign(6, 0); // 创建大小为6的数组,初始化为0
此时数组状态: [0, 0, 0, 0, 0, 0]
步骤3:处理第一个面(face0 = [0, 1, 2])
处理顶点0 :
- m_vertex_to_face_start[0] 当前值为0
- 执行 m_vertex_faces_all[0] = 0 (存储面索引0)
- 然后 m_vertex_to_face_start[0] 递增为1
处理顶点1 :
- m_vertex_to_face_start[1] 当前值为1
- 执行 m_vertex_faces_all[1] = 0
- 然后 m_vertex_to_face_start[1] 递增为2
处理顶点2 :
- m_vertex_to_face_start[2] 当前值为3
- 执行 m_vertex_faces_all[3] = 0
- 然后 m_vertex_to_face_start[2] 递增为4
此时数组状态: [0, 0, 0, 0, 0, 0] → [0, 0, 0, 0, 0, 0] (实际存储了面索引0)
步骤4:处理第二个面(face1 = [1, 2, 3])
处理顶点1 :
- m_vertex_to_face_start[1] 当前值为2
- 执行 m_vertex_faces_all[2] = 1
- 然后 m_vertex_to_face_start[1] 递增为3
处理顶点2 :
- m_vertex_to_face_start[2] 当前值为4
- 执行 m_vertex_faces_all[4] = 1
- 然后 m_vertex_to_face_start[2] 递增为5
处理顶点3 :
- m_vertex_to_face_start[3] 当前值为5
- 执行 m_vertex_faces_all[5] = 1
- 然后 m_vertex_to_face_start[3] 递增为6
### 最终结果
分配完成后,数据结构如下:
m_m_vertex_to_face_start数组:[0, 1, 3, 5, 6]
m_vertex_faces_all数组 : [0, 0, 1, 0, 1, 1]
每个顶点对应的面索引 :
- 顶点0 :索引范围[0, 1) → 面索引 [0]
- 顶点1 :索引范围[1, 3) → 面索引 [0, 1]
- 顶点2 :索引范围[3, 5) → 面索引 [0, 1]
- 顶点3 :索引范围[5, 6) → 面索引 [1]
二、Model 模型
1、ModelVolume 模型体积
// An object STL, or a modifier volume, over which a different set of parameters shall be applied.
// ModelVolume instances are owned by a ModelObject.
class ModelVolume final : public ObjectBase
{
public:
std::string name;
// struct used by reload from disk command to recover data from disk
struct Source
{
std::string input_file;
int object_idx{ -1 };
int volume_idx{ -1 };
Vec3d mesh_offset{ Vec3d::Zero() };
Geometry::Transformation transform;
bool is_converted_from_inches{ false };
bool is_converted_from_meters{ false };
bool is_from_builtin_objects{ false };
template<class Archive> void serialize(Archive& ar) {
//FIXME Vojtech: Serialize / deserialize only if the Source is set.
// likely testing input_file or object_idx would be sufficient.
ar(input_file, object_idx, volume_idx, mesh_offset, transform, is_converted_from_inches, is_converted_from_meters, is_from_builtin_objects);
}
};
Source source;
// struct used by cut command
// It contains information about connetors
struct CutInfo
{
bool is_from_upper{true};
bool is_connector{false};
bool is_processed{true};
CutConnectorType connector_type{CutConnectorType::Plug};
float radius{0.f};
float height{0.f};
float radius_tolerance{0.f}; // [0.f : 1.f]
float height_tolerance{0.f}; // [0.f : 1.f]
CutInfo() = default;
CutInfo(CutConnectorType type, float radius_, float height_, float rad_tolerance, float h_tolerance, bool processed = false)
: is_connector(true), is_processed(processed), connector_type(type)
, radius(radius_), height(height_), radius_tolerance(rad_tolerance), height_tolerance(h_tolerance)
{}
void set_processed() { is_processed = true; }
void invalidate() { is_connector = false; }
void reset_from_upper() { is_from_upper = true; }
template<class Archive> inline void serialize(Archive &ar) { ar(is_connector, is_processed, connector_type, radius_tolerance, height_tolerance); }
};
CutInfo cut_info;
bool is_from_upper() const { return cut_info.is_from_upper; }
void reset_from_upper() { cut_info.reset_from_upper(); }
bool is_cut_connector() const { return cut_info.is_processed && cut_info.is_connector; }
void invalidate_cut_info() { cut_info.invalidate(); }
// The triangular model.
const TriangleMesh& mesh() const { return *m_mesh.get(); }
const TriangleMesh* mesh_ptr() const { return m_mesh.get(); }
void set_mesh(const TriangleMesh &mesh) { m_mesh = std::make_shared<const TriangleMesh>(mesh); }
void set_mesh(TriangleMesh &&mesh) { m_mesh = std::make_shared<const TriangleMesh>(std::move(mesh)); }
void set_mesh(const indexed_triangle_set &mesh) { m_mesh = std::make_shared<const TriangleMesh>(mesh); }
void set_mesh(indexed_triangle_set &&mesh) { m_mesh = std::make_shared<const TriangleMesh>(std::move(mesh)); }
void set_mesh(std::shared_ptr<const TriangleMesh> &mesh) { m_mesh = mesh; }
void set_mesh(std::unique_ptr<const TriangleMesh> &&mesh) { m_mesh = std::move(mesh); }
void reset_mesh() { m_mesh = std::make_shared<const TriangleMesh>(); }
const std::shared_ptr<const TriangleMesh> &get_mesh_shared_ptr() const { return m_mesh; }
// Configuration parameters specific to an object model geometry or a modifier volume,
// overriding the global Slic3r settings and the ModelObject settings.
ModelConfigObject config;
// List of mesh facets to be supported/unsupported.
FacetsAnnotation supported_facets;
// List of seam enforcers/blockers.
FacetsAnnotation seam_facets;
// List of mesh facets painted for MMU segmentation.
FacetsAnnotation mmu_segmentation_facets;
// BBS: quick access for volume extruders, 1 based
mutable std::vector<int> mmuseg_extruders;
mutable Timestamp mmuseg_ts;
// List of exterior faces
FacetsAnnotation exterior_facets;
// Is set only when volume is Embossed Shape
// Contain 2d information about embossed shape to be editabled
std::optional<EmbossShape> emboss_shape;
// A parent object owning this modifier volume.
ModelObject* get_object() const { return this->object; }
ModelVolumeType type() const { return m_type; }
void set_type(const ModelVolumeType t) { m_type = t; }
bool is_model_part() const { return m_type == ModelVolumeType::MODEL_PART; }
bool is_negative_volume() const { return m_type == ModelVolumeType::NEGATIVE_VOLUME; }
bool is_modifier() const { return m_type == ModelVolumeType::PARAMETER_MODIFIER; }
bool is_support_enforcer() const { return m_type == ModelVolumeType::SUPPORT_ENFORCER; }
bool is_support_blocker() const { return m_type == ModelVolumeType::SUPPORT_BLOCKER; }
bool is_support_modifier() const { return m_type == ModelVolumeType::SUPPORT_BLOCKER || m_type == ModelVolumeType::SUPPORT_ENFORCER; }
bool is_svg() const { return emboss_shape.has_value(); }
bool is_the_only_one_part() const; // behave like an object
t_model_material_id material_id() const { return m_material_id; }
void set_material_id(t_model_material_id material_id);
void reset_extra_facets();
ModelMaterial* material() const;
void set_material(t_model_material_id material_id, const ModelMaterial &material);
// Extract the current extruder ID based on this ModelVolume's config and the parent ModelObject's config.
// Extruder ID is only valid for FFF. Returns -1 for SLA or if the extruder ID is not applicable (support volumes).
int extruder_id() const;
bool is_splittable() const;
void apply_tolerance();
// BBS
std::vector<int> get_extruders() const;
void update_extruder_count(size_t extruder_count);
void update_extruder_count_when_delete_filament(size_t extruder_count, size_t filament_id, int replace_filament_id = -1);
// Split this volume, append the result to the object owning this volume.
// Return the number of volumes created from this one.
// This is useful to assign different materials to different volumes of an object.
size_t split(unsigned int max_extruders, float scale_det = 1.f);
void translate(double x, double y, double z) { translate(Vec3d(x, y, z)); }
void translate(const Vec3d& displacement);
void scale(const Vec3d& scaling_factors);
void scale(double x, double y, double z) { scale(Vec3d(x, y, z)); }
void scale(double s) { scale(Vec3d(s, s, s)); }
void rotate(double angle, Axis axis);
void rotate(double angle, const Vec3d& axis);
void mirror(Axis axis);
// This method could only be called before the meshes of this ModelVolumes are not shared!
void scale_geometry_after_creation(const Vec3f &versor);
void scale_geometry_after_creation(const float scale) { this->scale_geometry_after_creation(Vec3f(scale, scale, scale)); }
// Translates the mesh and the convex hull so that the origin of their vertices is in the center of this volume's bounding box.
// Attention! This method may only be called just after ModelVolume creation! It must not be called once the TriangleMesh of this ModelVolume is shared!
void center_geometry_after_creation(bool update_source_offset = true);
void calculate_convex_hull();
const TriangleMesh& get_convex_hull() const;
const std::shared_ptr<const TriangleMesh>& get_convex_hull_shared_ptr() const { return m_convex_hull; }
//BBS: add convex_hell_2d related logic
const Polygon& get_convex_hull_2d(const Transform3d &trafo_instance) const;
void invalidate_convex_hull_2d()
{
m_convex_hull_2d.clear();
}
// Get count of errors in the mesh
int get_repaired_errors_count() const;
// Helpers for loading / storing into AMF / 3MF files.
static ModelVolumeType type_from_string(const std::string &s);
static std::string type_to_string(const ModelVolumeType t);
const Geometry::Transformation& get_transformation() const { return m_transformation; }
void set_transformation(const Geometry::Transformation& transformation) { m_transformation = transformation; }
void set_transformation(const Transform3d &trafo) { m_transformation.set_from_transform(trafo); }
const Vec3d& get_offset() const { return m_transformation.get_offset(); }
double get_offset(Axis axis) const { return m_transformation.get_offset(axis); }
void set_offset(const Vec3d& offset) { m_transformation.set_offset(offset); }
void set_offset(Axis axis, double offset) { m_transformation.set_offset(axis, offset); }
const Vec3d& get_rotation() const { return m_transformation.get_rotation(); }
double get_rotation(Axis axis) const { return m_transformation.get_rotation(axis); }
void set_rotation(const Vec3d& rotation) { m_transformation.set_rotation(rotation); }
const Vec3d &get_scaling_factor() const { return m_transformation.get_scaling_factor(); }
double get_scaling_factor(Axis axis) const { return m_transformation.get_scaling_factor(axis); }
void set_scaling_factor(const Vec3d& scaling_factor) { m_transformation.set_scaling_factor(scaling_factor); }
void set_scaling_factor(Axis axis, double scaling_factor) { m_transformation.set_scaling_factor(axis, scaling_factor); }
const Vec3d& get_mirror() const { return m_transformation.get_mirror(); }
double get_mirror(Axis axis) const { return m_transformation.get_mirror(axis); }
bool is_left_handed() const { return m_transformation.is_left_handed(); }
void set_mirror(const Vec3d& mirror) { m_transformation.set_mirror(mirror); }
void set_mirror(Axis axis, double mirror) { m_transformation.set_mirror(axis, mirror); }
void convert_from_imperial_units();
void convert_from_meters();
void set_text_info(const TextInfo& text_info) { m_text_info = text_info; }
const TextInfo& get_text_info() const { return m_text_info; }
bool is_text() const { return !m_text_info.m_text.empty(); }
const Transform3d &get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const;
void set_new_unique_id() {
ObjectBase::set_new_unique_id();
this->config.set_new_unique_id();
this->supported_facets.set_new_unique_id();
this->seam_facets.set_new_unique_id();
this->mmu_segmentation_facets.set_new_unique_id();
}
bool is_fdm_support_painted() const { return !this->supported_facets.empty(); }
bool is_seam_painted() const { return !this->seam_facets.empty(); }
bool is_mm_painted() const { return !this->mmu_segmentation_facets.empty(); }
protected:
friend class Print;
friend class SLAPrint;
friend class Model;
friend class ModelObject;
friend void model_volume_list_update_supports(ModelObject& model_object_dst, const ModelObject& model_object_new);
// Copies IDs of both the ModelVolume and its config.
explicit ModelVolume(const ModelVolume &rhs) = default;
void set_model_object(ModelObject *model_object) { object = model_object; }
void assign_new_unique_ids_recursive() override;
void transform_this_mesh(const Transform3d& t, bool fix_left_handed);
void transform_this_mesh(const Matrix3d& m, bool fix_left_handed);
private:
// Parent object owning this ModelVolume.
ModelObject* object;
// The triangular model.
std::shared_ptr<const TriangleMesh> m_mesh;
// Is it an object to be printed, or a modifier volume?
ModelVolumeType m_type;
t_model_material_id m_material_id;
// The convex hull of this model's mesh.
std::shared_ptr<const TriangleMesh> m_convex_hull;
//BBS: add convex hull 2d related logic
mutable Polygon m_convex_hull_2d; //BBS, used for convex_hell_2d acceleration
mutable Transform3d m_cached_trans_matrix{Transform3d::Identity()}; // BBS, used for convex_hell_2d acceleration
mutable Polygon m_cached_2d_polygon; //BBS, used for convex_hell_2d acceleration
Geometry::Transformation m_transformation;
TextInfo m_text_info;
//BBS: add convex_hell_2d related logic
void calculate_convex_hull_2d(const Geometry::Transformation &transformation) const;
// flag to optimize the checking if the volume is splittable
// -1 -> is unknown value (before first cheking)
// 0 -> is not splittable
// 1 -> is splittable
mutable int m_is_splittable{ -1 };
ModelVolume(ModelObject *object, const TriangleMesh &mesh, ModelVolumeType type = ModelVolumeType::MODEL_PART) : m_mesh(new TriangleMesh(mesh)), m_type(type), object(object)
{
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->supported_facets.id().valid());
assert(this->seam_facets.id().valid());
assert(this->mmu_segmentation_facets.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->supported_facets.id());
assert(this->id() != this->seam_facets.id());
assert(this->id() != this->mmu_segmentation_facets.id());
if (mesh.facets_count() > 1)
calculate_convex_hull();
}
ModelVolume(ModelObject *object, const std::shared_ptr<const TriangleMesh> &mesh, ModelVolumeType type = ModelVolumeType::MODEL_PART) : m_mesh(mesh), m_type(type), object(object)
{
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->supported_facets.id().valid());
assert(this->seam_facets.id().valid());
assert(this->mmu_segmentation_facets.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->supported_facets.id());
assert(this->id() != this->seam_facets.id());
assert(this->id() != this->mmu_segmentation_facets.id());
}
ModelVolume(ModelObject *object, TriangleMesh &&mesh, TriangleMesh &&convex_hull, ModelVolumeType type = ModelVolumeType::MODEL_PART) :
m_mesh(new TriangleMesh(std::move(mesh))), m_convex_hull(new TriangleMesh(std::move(convex_hull))), m_type(type), object(object) {
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->supported_facets.id().valid());
assert(this->seam_facets.id().valid());
assert(this->mmu_segmentation_facets.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->supported_facets.id());
assert(this->id() != this->seam_facets.id());
assert(this->id() != this->mmu_segmentation_facets.id());
}
// Copying an existing volume, therefore this volume will get a copy of the ID assigned.
ModelVolume(ModelObject *object, const ModelVolume &other) :
ObjectBase(other),
name(other.name), source(other.source), m_mesh(other.m_mesh), m_convex_hull(other.m_convex_hull),
config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation),
supported_facets(other.supported_facets), seam_facets(other.seam_facets), mmu_segmentation_facets(other.mmu_segmentation_facets),
m_text_info(other.m_text_info), emboss_shape(other.emboss_shape)
{
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->supported_facets.id().valid());
assert(this->seam_facets.id().valid());
assert(this->mmu_segmentation_facets.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->supported_facets.id());
assert(this->id() != this->seam_facets.id());
assert(this->id() != this->mmu_segmentation_facets.id());
assert(this->id() == other.id());
assert(this->config.id() == other.config.id());
assert(this->supported_facets.id() == other.supported_facets.id());
assert(this->seam_facets.id() == other.seam_facets.id());
assert(this->mmu_segmentation_facets.id() == other.mmu_segmentation_facets.id());
this->set_material_id(other.material_id());
}
// Providing a new mesh, therefore this volume will get a new unique ID assigned.
ModelVolume(ModelObject *object, const ModelVolume &other, const TriangleMesh &&mesh) :
name(other.name), source(other.source), m_mesh(new TriangleMesh(std::move(mesh))), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation),
emboss_shape(other.emboss_shape)
{
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->supported_facets.id().valid());
assert(this->seam_facets.id().valid());
assert(this->mmu_segmentation_facets.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->supported_facets.id());
assert(this->id() != this->seam_facets.id());
assert(this->id() != this->mmu_segmentation_facets.id());
assert(this->id() != other.id());
assert(this->config.id() == other.config.id());
this->set_material_id(other.material_id());
this->config.set_new_unique_id();
if (mesh.facets_count() > 1)
calculate_convex_hull();
assert(this->config.id().valid());
assert(this->config.id() != other.config.id());
assert(this->supported_facets.id() != other.supported_facets.id());
assert(this->seam_facets.id() != other.seam_facets.id());
assert(this->mmu_segmentation_facets.id() != other.mmu_segmentation_facets.id());
assert(this->id() != this->config.id());
assert(this->supported_facets.empty());
assert(this->seam_facets.empty());
assert(this->mmu_segmentation_facets.empty());
}
ModelVolume& operator=(ModelVolume &rhs) = delete;
friend class cereal::access;
friend class UndoRedo::StackImpl;
// Used for deserialization, therefore no IDs are allocated.
ModelVolume() : ObjectBase(-1), config(-1), supported_facets(-1), seam_facets(-1), mmu_segmentation_facets(-1), object(nullptr) {
assert(this->id().invalid());
assert(this->config.id().invalid());
assert(this->supported_facets.id().invalid());
assert(this->seam_facets.id().invalid());
assert(this->mmu_segmentation_facets.id().invalid());
}
template<class Archive> void load(Archive &ar) {
bool has_convex_hull;
// BBS: add backup, check modify
bool mesh_changed = false;
auto tr = m_transformation;
ar(name, source, m_mesh, m_type, m_material_id, m_transformation, m_is_splittable, has_convex_hull, m_text_info, cut_info);
mesh_changed |= !(tr == m_transformation);
auto t = supported_facets.timestamp();
cereal::load_by_value(ar, supported_facets);
mesh_changed |= t != supported_facets.timestamp();
t = seam_facets.timestamp();
cereal::load_by_value(ar, seam_facets);
mesh_changed |= t != seam_facets.timestamp();
t = mmu_segmentation_facets.timestamp();
cereal::load_by_value(ar, mmu_segmentation_facets);
mesh_changed |= t != mmu_segmentation_facets.timestamp();
cereal::load_by_value(ar, config);
cereal::load(ar, emboss_shape);
assert(m_mesh);
if (has_convex_hull) {
cereal::load_optional(ar, m_convex_hull);
if (! m_convex_hull && ! m_mesh->empty())
// The convex hull was released from the Undo / Redo stack to conserve memory. Recalculate it.
this->calculate_convex_hull();
} else
m_convex_hull.reset();
if (mesh_changed && object)
Slic3r::save_object_mesh(*object);
}
template<class Archive> void save(Archive &ar) const {
bool has_convex_hull = m_convex_hull.get() != nullptr;
ar(name, source, m_mesh, m_type, m_material_id, m_transformation, m_is_splittable, has_convex_hull, m_text_info, cut_info);
cereal::save_by_value(ar, supported_facets);
cereal::save_by_value(ar, seam_facets);
cereal::save_by_value(ar, mmu_segmentation_facets);
cereal::save_by_value(ar, config);
cereal::save(ar, emboss_shape);
if (has_convex_hull)
cereal::save_optional(ar, m_convex_hull);
}
};
成员变量:
m_mesh:在构造函数是会创建一个智能指针,用来保存TriangleMesh。
object:用来保存上一级对象指针,在构造函数中传进来,此模型体积类会保存在object->volumes数组中。可以通过object->add_volume(mesh)来创建一个ModelVolume对象。
name:用来保存名称
2、ModelInstance 模型实例
class ModelInstance final : public ObjectBase
{
private:
Geometry::Transformation m_transformation;
Geometry::Transformation m_assemble_transformation;
Vec3d m_offset_to_assembly{ 0.0, 0.0, 0.0 };
bool m_assemble_initialized;
public:
// flag showing the position of this instance with respect to the print volume (set by Print::validate() using ModelObject::check_instances_print_volume_state())
ModelInstanceEPrintVolumeState print_volume_state;
// Whether or not this instance is printable
bool printable;
bool use_loaded_id_for_label {false};
int arrange_order = 0; // BBS
size_t loaded_id = 0; // BBS
size_t get_labeled_id() const
{
if (use_loaded_id_for_label && (loaded_id > 0))
return loaded_id;
else
return id().id;
}
ModelObject* get_object() const { return this->object; }
const Geometry::Transformation& get_transformation() const { return m_transformation; }
void set_transformation(const Geometry::Transformation& transformation) { m_transformation = transformation; }
const Geometry::Transformation& get_assemble_transformation() const { return m_assemble_transformation; }
void set_assemble_transformation(const Geometry::Transformation& transformation) {
m_assemble_initialized = true;
m_assemble_transformation = transformation;
}
void set_assemble_from_transform(const Transform3d& transform) {
m_assemble_initialized = true;
m_assemble_transformation.set_from_transform(transform);
}
const Vec3d& get_assemble_offset() {return m_assemble_transformation.get_offset(); }
void set_assemble_offset(const Vec3d &offset){ m_assemble_initialized = true;m_assemble_transformation.set_offset(offset);}
void set_assemble_rotation(const Vec3d &rotation) { m_assemble_transformation.set_rotation(rotation); }
void rotate_assemble(double angle, const Vec3d& axis) {
m_assemble_transformation.set_rotation(m_assemble_transformation.get_rotation() + Geometry::extract_euler_angles(Eigen::Quaterniond(Eigen::AngleAxisd(angle, axis)).toRotationMatrix()));
}
// BBS
void set_offset_to_assembly(const Vec3d& offset) { m_offset_to_assembly = offset; }
const Vec3d& get_offset_to_assembly() const { return m_offset_to_assembly; }
const Vec3d& get_offset() const { return m_transformation.get_offset(); }
double get_offset(Axis axis) const { return m_transformation.get_offset(axis); }
void set_offset(const Vec3d& offset) { m_transformation.set_offset(offset); }
void set_offset(Axis axis, double offset) { m_transformation.set_offset(axis, offset); }
const Vec3d& get_rotation() const { return m_transformation.get_rotation(); }
double get_rotation(Axis axis) const { return m_transformation.get_rotation(axis); }
void set_rotation(const Vec3d& rotation) { m_transformation.set_rotation(rotation); }
// BBS
void rotate(Matrix3d rotation_matrix);
const Vec3d& get_scaling_factor() const { return m_transformation.get_scaling_factor(); }
double get_scaling_factor(Axis axis) const { return m_transformation.get_scaling_factor(axis); }
void set_scaling_factor(const Vec3d& scaling_factor) { m_transformation.set_scaling_factor(scaling_factor); }
void set_scaling_factor(Axis axis, double scaling_factor) { m_transformation.set_scaling_factor(axis, scaling_factor); }
const Vec3d& get_mirror() const { return m_transformation.get_mirror(); }
double get_mirror(Axis axis) const { return m_transformation.get_mirror(axis); }
bool is_left_handed() const { return m_transformation.is_left_handed(); }
void set_mirror(const Vec3d& mirror) { m_transformation.set_mirror(mirror); }
void set_mirror(Axis axis, double mirror) { m_transformation.set_mirror(axis, mirror); }
// To be called on an external mesh
void transform_mesh(TriangleMesh* mesh, bool dont_translate = false) const;
// Calculate a bounding box of a transformed mesh. To be called on an external mesh.
BoundingBoxf3 transform_mesh_bounding_box(const TriangleMesh& mesh, bool dont_translate = false) const;
// Transform an external bounding box.
BoundingBoxf3 transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate = false) const;
BoundingBoxf3 transform_bounding_box_in_assembly_view(const BoundingBoxf3 &bbox, bool dont_translate = false) const;
// Transform an external vector.
Vec3d transform_vector(const Vec3d& v, bool dont_translate = false) const;
// To be called on an external polygon. It does not translate the polygon, only rotates and scales.
void transform_polygon(Polygon* polygon) const;
const Transform3d &get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const;
bool is_printable() const { return object->printable && printable && (print_volume_state == ModelInstancePVS_Inside); }
bool is_assemble_initialized() { return m_assemble_initialized; }
//BBS
double get_auto_brim_width(double deltaT, double adhension) const;
double get_auto_brim_width() const;
// BBS
Polygon convex_hull_2d();
void invalidate_convex_hull_2d();
// Getting the input polygon for arrange
// We use void* as input type to avoid including Arrange.hpp in Model.hpp.
void get_arrange_polygon(void *arrange_polygon, const Slic3r::DynamicPrintConfig &config = Slic3r::DynamicPrintConfig()) const;
// Apply the arrange result on the ModelInstance
void apply_arrange_result(const Vec2d &offs, double rotation);
protected:
friend class Print;
friend class SLAPrint;
friend class Model;
friend class ModelObject;
explicit ModelInstance(const ModelInstance &rhs) = default;
void set_model_object(ModelObject *model_object) { object = model_object; }
private:
// Parent object, owning this instance.
ModelObject* object;
Polygon convex_hull; // BBS
// Constructor, which assigns a new unique ID.
explicit ModelInstance(ModelObject* object) : print_volume_state(ModelInstancePVS_Inside), printable(true), object(object), m_assemble_initialized(false) { assert(this->id().valid()); }
// Constructor, which assigns a new unique ID.
explicit ModelInstance(ModelObject *object, const ModelInstance &other) :
m_transformation(other.m_transformation)
, m_assemble_transformation(other.m_assemble_transformation)
, m_offset_to_assembly(other.m_offset_to_assembly)
, print_volume_state(ModelInstancePVS_Inside)
, printable(other.printable)
, object(object)
, m_assemble_initialized(false) { assert(this->id().valid() && this->id() != other.id()); }
explicit ModelInstance(ModelInstance &&rhs) = delete;
ModelInstance& operator=(const ModelInstance &rhs) = delete;
ModelInstance& operator=(ModelInstance &&rhs) = delete;
friend class cereal::access;
friend class UndoRedo::StackImpl;
// Used for deserialization, therefore no IDs are allocated.
ModelInstance() : ObjectBase(-1), object(nullptr) { assert(this->id().invalid()); }
// BBS. Add added members to archive.
template<class Archive> void serialize(Archive& ar) {
ar(m_transformation, print_volume_state, printable, m_assemble_transformation, m_offset_to_assembly, m_assemble_initialized);
}
};
成员变量
object:用来保存上一级对象指针,在构造函数中传进来,可以通过object->add_instance()来创建一个ModelInstance类对象,数据会保存在object->instances数组中。
每new出来一个ModelObject对象时,就需要让ModelObject通过add_instance函数创建一个ModelInstance对象,保存在instances数组中。
3、ModelObject 模型对象
class ModelObject final : public ObjectBase
{
public:
std::string name;
//BBS: add module name for assemble
std::string module_name;
std::string input_file; // XXX: consider fs::path
// Instances of this ModelObject. Each instance defines a shift on the print bed, rotation around the Z axis and a uniform scaling.
// Instances are owned by this ModelObject.
ModelInstancePtrs instances;
// Printable and modifier volumes, each with its material ID and a set of override parameters.
// ModelVolumes are owned by this ModelObject.
ModelVolumePtrs volumes;
// Configuration parameters specific to a single ModelObject, overriding the global Slic3r settings.
ModelConfigObject config;
// Variation of a layer thickness for spans of Z coordinates + optional parameter overrides.
t_layer_config_ranges layer_config_ranges;
// Profile of increasing z to a layer height, to be linearly interpolated when calculating the layers.
// The pairs of <z, layer_height> are packed into a 1D array.
LayerHeightProfile layer_height_profile;
// Whether or not this object is printable
bool printable;
// This vector holds position of selected support points for SLA. The data are
// saved in mesh coordinates to allow using them for several instances.
// The format is (x, y, z, point_size, supports_island)
sla::SupportPoints sla_support_points;
// To keep track of where the points came from (used for synchronization between
// the SLA gizmo and the backend).
sla::PointsStatus sla_points_status = sla::PointsStatus::NoPoints;
// Holes to be drilled into the object so resin can flow out
sla::DrainHoles sla_drain_holes;
BrimPoints brim_points;
/* This vector accumulates the total translation applied to the object by the
center_around_origin() method. Callers might want to apply the same translation
to new volumes before adding them to this object in order to preserve alignment
when user expects that. */
Vec3d origin_translation;
// BBS: save for compare with new load volumes
std::vector<ObjectID> volume_ids;
// Connectors to be added into the object before cut and are used to create a solid/negative volumes during a cut perform
CutConnectors cut_connectors;
CutObjectBase cut_id;
std::vector<const ModelVolume*> const_volumes() const {return std::vector<const ModelVolume*>(volumes.begin(), volumes.end());}
Model* get_model() { return m_model; }
const Model* get_model() const { return m_model; }
// BBS: production extension
int get_backup_id() const;
template<typename T> const T* get_config_value(const DynamicPrintConfig& global_config, const std::string& config_option) {
if (config.has(config_option))
return static_cast<const T*>(config.option(config_option));
else
return global_config.option<T>(config_option);
}
ModelVolume* add_volume(const TriangleMesh &mesh, bool modify_to_center_geometry = true);
ModelVolume* add_volume(TriangleMesh &&mesh, ModelVolumeType type = ModelVolumeType::MODEL_PART, bool modify_to_center_geometry = true);
ModelVolume* add_volume(const ModelVolume &volume, ModelVolumeType type = ModelVolumeType::INVALID);
ModelVolume* add_volume(const ModelVolume &volume, TriangleMesh &&mesh);
ModelVolume* add_volume_with_shared_mesh(const ModelVolume &other, ModelVolumeType type = ModelVolumeType::MODEL_PART);
void delete_volume(size_t idx);
void clear_volumes();
void sort_volumes(bool full_sort);
bool is_multiparts() const { return volumes.size() > 1; }
// Checks if any of object volume is painted using the fdm support painting gizmo.
bool is_fdm_support_painted() const;
// Checks if any of object volume is painted using the seam painting gizmo.
bool is_seam_painted() const;
// Checks if any of object volume is painted using the multi-material painting gizmo.
bool is_mm_painted() const;
// This object may have a varying layer height by painting or by a table.
// Even if true is returned, the layer height profile may be "flat" with no difference to default layering.
bool has_custom_layering() const
{ return ! this->layer_config_ranges.empty() || ! this->layer_height_profile.empty(); }
ModelInstance* add_instance();
ModelInstance* add_instance(const ModelInstance &instance);
ModelInstance* add_instance(const Vec3d &offset, const Vec3d &scaling_factor, const Vec3d &rotation, const Vec3d &mirror);
void delete_instance(size_t idx);
void delete_last_instance();
void clear_instances();
// Returns the bounding box of the transformed instances.
// This bounding box is approximate and not snug.
// This bounding box is being cached.
const BoundingBoxf3& bounding_box() const;
const BoundingBoxf3& bounding_box_in_assembly_view() const;
void invalidate_bounding_box() { m_bounding_box_valid = false; m_raw_bounding_box_valid = false; m_raw_mesh_bounding_box_valid = false; }
// A mesh containing all transformed instances of this object.
TriangleMesh mesh() const;
// Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
// Currently used by ModelObject::mesh() and to calculate the 2D envelope for 2D plater.
TriangleMesh raw_mesh() const;
// The same as above, but producing a lightweight indexed_triangle_set.
indexed_triangle_set raw_indexed_triangle_set() const;
// A transformed snug bounding box around the non-modifier object volumes, without the translation applied.
// This bounding box is only used for the actual slicing.
const BoundingBoxf3& raw_bounding_box() const;
// A snug bounding box around the transformed non-modifier object volumes.
BoundingBoxf3 instance_bounding_box(size_t instance_idx, bool dont_translate = false) const;
BoundingBoxf3 instance_bounding_box(const ModelInstance& instance, bool dont_translate = false) const;
// A snug bounding box of non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
const BoundingBoxf3& raw_mesh_bounding_box() const;
// A snug bounding box of non-transformed (non-rotated, non-scaled, non-translated) sum of all object volumes.
BoundingBoxf3 full_raw_mesh_bounding_box() const;
//BBS: add instance convex hull bounding box
BoundingBoxf3 instance_convex_hull_bounding_box(size_t instance_idx, bool dont_translate = false) const;
BoundingBoxf3 instance_convex_hull_bounding_box(const ModelInstance* instance, bool dont_translate = false) const;
// Calculate 2D convex hull of of a projection of the transformed printable volumes into the XY plane.
// This method is cheap in that it does not make any unnecessary copy of the volume meshes.
// This method is used by the auto arrange function.
Polygon convex_hull_2d(const Transform3d &trafo_instance) const;
void center_around_origin(bool include_modifiers = true);
void ensure_on_bed(bool allow_negative_z = false);
void translate_instances(const Vec3d& vector);
void translate_instance(size_t instance_idx, const Vec3d& vector);
void translate(const Vec3d &vector) { this->translate(vector(0), vector(1), vector(2)); }
void translate(double x, double y, double z);
void scale(const Vec3d &versor);
void scale(const double s) { this->scale(Vec3d(s, s, s)); }
void scale(double x, double y, double z) { this->scale(Vec3d(x, y, z)); }
/// Scale the current ModelObject to fit by altering the scaling factor of ModelInstances.
/// It operates on the total size by duplicating the object according to all the instances.
/// \param size Sizef3 the size vector
void scale_to_fit(const Vec3d &size);
void rotate(double angle, Axis axis);
void rotate(double angle, const Vec3d& axis);
void mirror(Axis axis);
// This method could only be called before the meshes of this ModelVolumes are not shared!
void scale_mesh_after_creation(const float scale);
void convert_units(ModelObjectPtrs&new_objects, ConversionType conv_type, std::vector<int> volume_idxs);
size_t materials_count() const;
size_t facets_count() const;
size_t parts_count() const;
bool is_cut() const { return cut_id.id().valid(); }
bool has_connectors() const;
static indexed_triangle_set get_connector_mesh(CutConnectorAttributes connector_attributes, CutConnectorParas para);
void apply_cut_connectors(const std::string &name);
// invalidate cut state for this object and its connectors/volumes
void invalidate_cut();
// delete volumes which are marked as connector for this object
void delete_connectors();
void synchronize_model_after_cut();
void apply_cut_attributes(ModelObjectCutAttributes attributes);
void clone_for_cut(ModelObject **obj);
Transform3d calculate_cut_plane_inverse_matrix(const std::array<Vec3d, 4> &plane_points);
void process_connector_cut(ModelVolume *volume,
const Transform3d & instance_matrix,
const Transform3d& cut_matrix,
ModelObjectCutAttributes attributes,
ModelObject *upper, ModelObject *lower,
std::vector<ModelObject *> &dowels,
Vec3d &local_dowels_displace);
void process_modifier_cut(ModelVolume * volume,
const Transform3d & instance_matrix,
const Transform3d & inverse_cut_matrix,
ModelObjectCutAttributes attributes,
ModelObject * upper,
ModelObject * lower);
void process_volume_cut(ModelVolume * volume,
const Transform3d & instance_matrix,
const Transform3d & cut_matrix,
ModelObjectCutAttributes attributes,
TriangleMesh & upper_mesh,
TriangleMesh & lower_mesh);
void process_solid_part_cut(ModelVolume * volume,
const Transform3d & instance_matrix,
const Transform3d & cut_matrix,
const std::array<Vec3d, 4> &plane_points,
ModelObjectCutAttributes attributes,
ModelObject * upper,
ModelObject * lower,
Vec3d & local_displace);
// BBS: replace z with plane_points
ModelObjectPtrs cut(size_t instance, std::array<Vec3d, 4> plane_points, ModelObjectCutAttributes attributes);
// BBS
ModelObjectPtrs segment(size_t instance, unsigned int max_extruders, double smoothing_alpha = 0.5, int segment_number = 5);
void split(ModelObjectPtrs* new_objects);
void merge();
// BBS: Boolean opts - Musang King
bool make_boolean(ModelObject *cut_object, const std::string &boolean_opts);
ModelObjectPtrs merge_volumes(std::vector<int>& vol_indeces);//BBS
// Support for non-uniform scaling of instances. If an instance is rotated by angles, which are not multiples of ninety degrees,
// then the scaling in world coordinate system is not representable by the Geometry::Transformation structure.
// This situation is solved by baking in the instance transformation into the mesh vertices.
// Rotation and mirroring is being baked in. In case the instance scaling was non-uniform, it is baked in as well.
void bake_xy_rotation_into_meshes(size_t instance_idx);
double get_min_z() const;
double get_max_z() const;
double get_instance_min_z(size_t instance_idx) const;
double get_instance_max_z(size_t instance_idx) const;
// Print object statistics to console.
void print_info() const;
std::string get_export_filename() const;
// Get full stl statistics for all object's meshes
TriangleMeshStats get_object_stl_stats() const;
// Get count of errors in the mesh( or all object's meshes, if volume index isn't defined)
int get_repaired_errors_count(const int vol_idx = -1) const;
private:
friend class Model;
// This constructor assigns new ID to this ModelObject and its config.
explicit ModelObject(Model* model) : m_model(model), printable(true), origin_translation(Vec3d::Zero()),
m_bounding_box_valid(false), m_raw_bounding_box_valid(false), m_raw_mesh_bounding_box_valid(false)
{
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->layer_height_profile.id().valid());
}
explicit ModelObject(int) : ObjectBase(-1), config(-1), layer_height_profile(-1), m_model(nullptr), printable(true), origin_translation(Vec3d::Zero()), m_bounding_box_valid(false), m_raw_bounding_box_valid(false), m_raw_mesh_bounding_box_valid(false)
{
assert(this->id().invalid());
assert(this->config.id().invalid());
assert(this->layer_height_profile.id().invalid());
}
~ModelObject();
void assign_new_unique_ids_recursive() override;
// To be able to return an object from own copy / clone methods. Hopefully the compiler will do the "Copy elision"
// (Omits copy and move(since C++11) constructors, resulting in zero - copy pass - by - value semantics).
ModelObject(const ModelObject &rhs) : ObjectBase(-1), config(-1), layer_height_profile(-1), m_model(rhs.m_model) {
assert(this->id().invalid());
assert(this->config.id().invalid());
assert(this->layer_height_profile.id().invalid());
assert(rhs.id() != rhs.config.id());
assert(rhs.id() != rhs.layer_height_profile.id());
this->assign_copy(rhs);
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->layer_height_profile.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->layer_height_profile.id());
assert(this->id() == rhs.id());
assert(this->config.id() == rhs.config.id());
assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
}
explicit ModelObject(ModelObject &&rhs) : ObjectBase(-1), config(-1), layer_height_profile(-1) {
assert(this->id().invalid());
assert(this->config.id().invalid());
assert(this->layer_height_profile.id().invalid());
assert(rhs.id() != rhs.config.id());
assert(rhs.id() != rhs.layer_height_profile.id());
this->assign_copy(std::move(rhs));
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->layer_height_profile.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->layer_height_profile.id());
assert(this->id() == rhs.id());
assert(this->config.id() == rhs.config.id());
assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
}
ModelObject& operator=(const ModelObject &rhs) {
this->assign_copy(rhs);
m_model = rhs.m_model;
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->layer_height_profile.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->layer_height_profile.id());
assert(this->id() == rhs.id());
assert(this->config.id() == rhs.config.id());
assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
return *this;
}
ModelObject& operator=(ModelObject &&rhs) {
this->assign_copy(std::move(rhs));
m_model = rhs.m_model;
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->layer_height_profile.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->layer_height_profile.id());
assert(this->id() == rhs.id());
assert(this->config.id() == rhs.config.id());
assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
return *this;
}
void set_new_unique_id() {
ObjectBase::set_new_unique_id();
this->config.set_new_unique_id();
this->layer_height_profile.set_new_unique_id();
}
OBJECTBASE_DERIVED_COPY_MOVE_CLONE(ModelObject)
// Parent object, owning this ModelObject. Set to nullptr here, so the macros above will have it initialized.
Model *m_model = nullptr;
// Bounding box, cached.
mutable BoundingBoxf3 m_bounding_box;
mutable BoundingBoxf3 m_bounding_box_in_assembly_view;
mutable bool m_bounding_box_valid;
mutable BoundingBoxf3 m_raw_bounding_box;
mutable bool m_raw_bounding_box_valid;
mutable BoundingBoxf3 m_raw_mesh_bounding_box;
mutable bool m_raw_mesh_bounding_box_valid;
// Called by Print::apply() to set the model pointer after making a copy.
friend class Print;
friend class SLAPrint;
void set_model(Model *model) { m_model = model; }
// Undo / Redo through the cereal serialization library
friend class cereal::access;
friend class UndoRedo::StackImpl;
// Used for deserialization -> Don't allocate any IDs for the ModelObject or its config.
ModelObject() :
ObjectBase(-1), config(-1), layer_height_profile(-1),
m_model(nullptr), m_bounding_box_valid(false), m_raw_bounding_box_valid(false), m_raw_mesh_bounding_box_valid(false) {
assert(this->id().invalid());
assert(this->config.id().invalid());
assert(this->layer_height_profile.id().invalid());
}
template<class Archive> void save(Archive& ar) const {
ar(cereal::base_class<ObjectBase>(this));
Internal::StaticSerializationWrapper<ModelConfigObject const> config_wrapper(config);
Internal::StaticSerializationWrapper<LayerHeightProfile const> layer_heigth_profile_wrapper(layer_height_profile);
ar(name, module_name, input_file, instances, volumes, config_wrapper, layer_config_ranges, layer_heigth_profile_wrapper,
sla_support_points, sla_points_status, sla_drain_holes, printable, origin_translation, brim_points,
m_bounding_box, m_bounding_box_valid, m_raw_bounding_box, m_raw_bounding_box_valid, m_raw_mesh_bounding_box, m_raw_mesh_bounding_box_valid,
cut_connectors, cut_id);
}
template<class Archive> void load(Archive& ar) {
ar(cereal::base_class<ObjectBase>(this));
Internal::StaticSerializationWrapper<ModelConfigObject> config_wrapper(config);
Internal::StaticSerializationWrapper<LayerHeightProfile> layer_heigth_profile_wrapper(layer_height_profile);
// BBS: add backup, check modify
SaveObjectGaurd gaurd(*this);
ar(name, module_name, input_file, instances, volumes, config_wrapper, layer_config_ranges, layer_heigth_profile_wrapper,
sla_support_points, sla_points_status, sla_drain_holes, printable, origin_translation, brim_points,
m_bounding_box, m_bounding_box_valid, m_raw_bounding_box, m_raw_bounding_box_valid, m_raw_mesh_bounding_box, m_raw_mesh_bounding_box_valid,
cut_connectors, cut_id);
std::vector<ObjectID> volume_ids2;
std::transform(volumes.begin(), volumes.end(), std::back_inserter(volume_ids2), std::mem_fn(&ObjectBase::id));
if (volume_ids != volume_ids2)
Slic3r::save_object_mesh(*this);
volume_ids.clear();
}
// Called by Print::validate() from the UI thread.
unsigned int update_instances_print_volume_state(const BuildVolume &build_volume);
};
成员变量:
m_model:用来保存上级对象指针。在构造函数中传进来。可以通过model->add_object()来创建一个ModelObject类对象,数据会保存在model->objects中。
ModelObject类除了有instances、volumes外,还会有config用来保存模型参数,比如耗材颜色之类的。
4、Model模型
class Model final : public ObjectBase
{
public:
// Materials are owned by a model and referenced by objects through t_model_material_id.
// Single material may be shared by multiple models.
ModelMaterialMap materials;
// Objects are owned by a model. Each model may have multiple instances, each instance having its own transformation (shift, scale, rotation).
ModelObjectPtrs objects;
// Wipe tower object.
ModelWipeTower wipe_tower;
// BBS static members store extruder parameters and speed map of all models
static std::map<size_t, ExtruderParams> extruderParamsMap;
static GlobalSpeedMap printSpeedMap;
// DesignInfo of Model
std::string stl_design_id;
std::string design_id;
std::string stl_design_country;
std::string makerlab_region;
std::string makerlab_name;
std::string makerlab_id;
std::shared_ptr<ModelDesignInfo> design_info = nullptr;
std::shared_ptr<ModelInfo> model_info = nullptr;
std::shared_ptr<ModelProfileInfo> profile_info = nullptr;
//makerlab information
std::string mk_name;
std::string mk_version;
std::vector<std::string> md_name;
std::vector<std::string> md_value;
void SetDesigner(std::string designer, std::string designer_user_id) {
if (design_info == nullptr) {
design_info = std::make_shared<ModelDesignInfo>();
}
design_info->Designer = designer;
//BBS tips: clean design user id when set designer
design_info->DesignerUserId = designer_user_id;
}
// Extensions for color print
// CustomGCode::Info custom_gcode_per_print_z;
//BBS: replace model custom gcode with current plate custom gcode
int curr_plate_index{ 0 };
std::map<int, CustomGCode::Info> plates_custom_gcodes; //map<plate_index, CustomGCode::Info>
const CustomGCode::Info get_curr_plate_custom_gcodes() const {
if (plates_custom_gcodes.find(curr_plate_index) != plates_custom_gcodes.end()) {
return plates_custom_gcodes.at(curr_plate_index);
}
return CustomGCode::Info();
}
// Default constructor assigns a new ID to the model.
Model() { assert(this->id().valid()); }
~Model();
/* To be able to return an object from own copy / clone methods. Hopefully the compiler will do the "Copy elision" */
/* (Omits copy and move(since C++11) constructors, resulting in zero - copy pass - by - value semantics). */
Model(const Model &rhs) : ObjectBase(-1) { assert(this->id().invalid()); this->assign_copy(rhs); assert(this->id().valid()); assert(this->id() == rhs.id()); }
// BBS: remove explicit, prefer use move constructor in function return model
Model(Model &&rhs) : ObjectBase(-1) { assert(this->id().invalid()); this->assign_copy(std::move(rhs)); assert(this->id().valid()); assert(this->id() == rhs.id()); }
Model& operator=(const Model &rhs) { this->assign_copy(rhs); assert(this->id().valid()); assert(this->id() == rhs.id()); return *this; }
Model& operator=(Model &&rhs) { this->assign_copy(std::move(rhs)); assert(this->id().valid()); assert(this->id() == rhs.id()); return *this; }
OBJECTBASE_DERIVED_COPY_MOVE_CLONE(Model)
static Model read_from_step(const std::string& input_file,
LoadStrategy options,
ImportStepProgressFn stepFn,
StepIsUtf8Fn stepIsUtf8Fn,
std::function<int(Slic3r::Step&, double&, double&, bool&)> step_mesh_fn,
double linear_defletion,
double angle_defletion,
bool is_split_compound);
//BBS: add part plate related logic
// BBS: backup
//BBS: is_xxx is used for is_bbs_3mf when loading 3mf, is used for is_inches when loading amf
static Model read_from_file(
const std::string& input_file,
DynamicPrintConfig* config = nullptr, ConfigSubstitutionContext* config_substitutions = nullptr,
LoadStrategy options = LoadStrategy::AddDefaultInstances, PlateDataPtrs* plate_data = nullptr,
std::vector<Preset*>* project_presets = nullptr, bool* is_xxx = nullptr, Semver* file_version = nullptr, Import3mfProgressFn proFn = nullptr,
ImportstlProgressFn stlFn = nullptr,
BBLProject * project = nullptr,
int plate_id = 0,
ObjImportColorFn objFn = nullptr
);
// BBS
static bool obj_import_vertex_color_deal(const std::vector<unsigned char> &vertex_filament_ids, const unsigned char &first_extruder_id, Model *model);
static bool obj_import_face_color_deal(const std::vector<unsigned char> &face_filament_ids, const unsigned char &first_extruder_id, Model *model);
static double findMaxSpeed(const ModelObject* object);
static double getThermalLength(const ModelVolume* modelVolumePtr);
static double getThermalLength(const std::vector<ModelVolume*> modelVolumePtrs);
static Polygon getBedPolygon() { return Model::printSpeedMap.bed_poly; }
//BBS static functions that update extruder params and speed table
static void setPrintSpeedTable(const DynamicPrintConfig& config, const PrintConfig& print_config);
static void setExtruderParams(const DynamicPrintConfig& config, int filament_count);
// BBS: backup
static Model read_from_archive(
const std::string& input_file,
DynamicPrintConfig* config, ConfigSubstitutionContext* config_substitutions, En3mfType& out_file_type,
LoadStrategy options = LoadStrategy::AddDefaultInstances, PlateDataPtrs* plate_data = nullptr, std::vector<Preset*>* project_presets = nullptr, Semver* file_version = nullptr, Import3mfProgressFn proFn = nullptr, BBLProject* project = nullptr);
// Add a new ModelObject to this Model, generate a new ID for this ModelObject.
ModelObject* add_object();
ModelObject* add_object(const char *name, const char *path, const TriangleMesh &mesh);
ModelObject* add_object(const char *name, const char *path, TriangleMesh &&mesh);
ModelObject* add_object(const ModelObject &other);
void set_assembly_pos(ModelObject * model_object);
void delete_object(size_t idx);
bool delete_object(ObjectID id);
bool delete_object(ModelObject* object);
void clear_objects();
// BBS: backup, reuse objects
void collect_reusable_objects(std::vector<ObjectBase *> & objects);
void set_object_backup_id(ModelObject const & object, int uuid);
int get_object_backup_id(ModelObject const & object); // generate new if needed
int get_object_backup_id(ModelObject const & object) const; // generate new if needed
ModelMaterial* add_material(t_model_material_id material_id);
ModelMaterial* add_material(t_model_material_id material_id, const ModelMaterial &other);
ModelMaterial* get_material(t_model_material_id material_id) {
ModelMaterialMap::iterator i = this->materials.find(material_id);
return (i == this->materials.end()) ? nullptr : i->second;
}
void delete_material(t_model_material_id material_id);
void clear_materials();
bool add_default_instances();
// Returns approximate axis aligned bounding box of this model
BoundingBoxf3 bounding_box() const;
BoundingBoxf3 bounding_box_in_assembly_view() const;
// Set the print_volume_state of PrintObject::instances,
// return total number of printable objects.
unsigned int update_print_volume_state(const BuildVolume &build_volume);
// Returns true if any ModelObject was modified.
bool center_instances_around_point(const Vec2d &point);
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
TriangleMesh mesh() const;
// Croaks if the duplicated objects do not fit the print bed.
void duplicate_objects_grid(size_t x, size_t y, coordf_t dist);
bool looks_like_multipart_object() const;
void convert_multipart_object(unsigned int max_extruders);
bool looks_like_imperial_units() const;
void convert_from_imperial_units(bool only_small_volumes);
bool looks_like_saved_in_meters() const;
void convert_from_meters(bool only_small_volumes);
int removed_objects_with_zero_volume();
// Ensures that the min z of the model is not negative
void adjust_min_z();
void print_info() const { for (const ModelObject *o : this->objects) o->print_info(); }
// Propose an output file name & path based on the first printable object's name and source input file's path.
std::string propose_export_file_name_and_path() const;
// Propose an output path, replace extension. The new_extension shall contain the initial dot.
std::string propose_export_file_name_and_path(const std::string &new_extension) const;
//BBS: add auxiliary files temp path
std::string get_auxiliary_file_temp_path();
// BBS: backup
std::string get_backup_path();
std::string get_backup_path(const std::string &sub_path);
void set_backup_path(const std::string &path);
void load_from(Model & model);
bool is_need_backup() { return need_backup; }
void set_need_backup();
void remove_backup_path_if_exist();
// Checks if any of objects is painted using the fdm support painting gizmo.
bool is_fdm_support_painted() const;
// Checks if any of objects is painted using the seam painting gizmo.
bool is_seam_painted() const;
// Checks if any of objects is painted using the multi-material painting gizmo.
bool is_mm_painted() const;
std::unique_ptr<CalibPressureAdvancePattern> calib_pa_pattern;
private:
explicit Model(int) : ObjectBase(-1)
{
assert(this->id().invalid());
}
void assign_new_unique_ids_recursive();
void update_links_bottom_up_recursive();
friend class cereal::access;
friend class UndoRedo::StackImpl;
template<class Archive> void load(Archive& ar) {
Internal::StaticSerializationWrapper<ModelWipeTower> wipe_tower_wrapper(wipe_tower);
ar(materials, objects, wipe_tower_wrapper);
}
template<class Archive> void save(Archive& ar) const {
Internal::StaticSerializationWrapper<ModelWipeTower const> wipe_tower_wrapper(wipe_tower);
ar(materials, objects, wipe_tower_wrapper);
}
//BBS: add aux temp directory
// BBS: backup
std::string backup_path;
bool need_backup = false;
std::map<int, int> object_backup_id_map; // ObjectId -> backup id;
int next_object_backup_id = 1;
};
通过wxGetApp().plater()->model()可以拿到保存在Plater::priv结构中的Slic3r::Model model对象的引用。
449

被折叠的 条评论
为什么被折叠?



