四、OrcaSlicer 模型数据

一、stl

1、顶点数据

typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> stl_vertex;
typedef Eigen::Matrix<int,   3, 1, Eigen::DontAlign> stl_triangle_vertex_indices;

stl_vertex 为顶点数据,是一个3*1的矩阵,数据类型为float,是一个3列1行的向量,3列分别表示x y z轴的坐标。

stl_triangle_vertex_indices 为三角型顶点索引,也是一个3*1的矩阵,数据类型为int。

        用stl_triangle_vertex_indices定义一个变量,就会有三个顶点数据,这三个数据就可以组合成一个三角面片,三角面片是三维模型的基础,所有的模型都是由三角面片组成的。

2、索引三角集

struct indexed_triangle_set
{
    indexed_triangle_set(std::vector<stl_triangle_vertex_indices>    indices_,
        std::vector<stl_vertex>                     vertices_) :indices(indices_), vertices(vertices_) {
        properties.resize(indices_.size());
    }
    indexed_triangle_set() {}

    void clear() { indices.clear(); vertices.clear(); properties.clear(); }

    size_t memsize() const {
        return sizeof(*this) + (sizeof(stl_triangle_vertex_indices) + sizeof(FaceProperty)) * indices.size() + sizeof(stl_vertex) * vertices.size();
    }

    std::vector<stl_triangle_vertex_indices>    indices;
    std::vector<stl_vertex>                     vertices;
    std::vector<FaceProperty>                   properties;

    bool empty() const { return indices.empty() || vertices.empty(); }
    stl_vertex get_vertex(int facet_idx, int vertex_idx) const{
        return vertices[indices[facet_idx][vertex_idx]];
    }
    float facet_area(int facet_idx) const {
        return std::abs((get_vertex(facet_idx, 0) - get_vertex(facet_idx, 1))
            .cross(get_vertex(facet_idx, 0) - get_vertex(facet_idx, 2)).norm()) / 2;
    }
    FaceProperty& get_property(int face_idx) {
        if (properties.size() != indices.size()) {
            properties.clear();
            properties.resize(indices.size());
        }
        return properties[face_idx];
    }
};

vertices表示所有顶点数据的集合;indices表示所有三角面片的集合。

函数get_vectex:根据三角面片的索引和顶点索引,获取顶点坐标。

函数 facet_area:用来计算某个三角面片的面积(叉积的模长除以2),可以参考:https://zhuanlan.zhihu.com/p/717102351 文章来理解。

3、三角网格

struct TriangleMeshStats {
    // Mesh metrics.
    uint32_t      number_of_facets          = 0;
    stl_vertex    max                       = stl_vertex::Zero();
    stl_vertex    min                       = stl_vertex::Zero();
    stl_vertex    size                      = stl_vertex::Zero();
    float         volume                    = -1.f;
    int           number_of_parts           = 0;

    // Mesh errors, remaining.
    int           open_edges                = 0;

    // Mesh errors, fixed.
    RepairedMeshErrors repaired_errors;

    void clear() { *this = TriangleMeshStats(); }

    TriangleMeshStats merge(const TriangleMeshStats &rhs) const {
      if (this->number_of_facets == 0)
        return rhs;
      else if (rhs.number_of_facets == 0)
        return *this;
      else {
        TriangleMeshStats out;
        out.number_of_facets        = this->number_of_facets + rhs.number_of_facets;
        out.min                     = this->min.cwiseMin(rhs.min);
        out.max                     = this->max.cwiseMax(rhs.max);
        out.size                    = out.max - out.min;
        out.number_of_parts         = this->number_of_parts     + rhs.number_of_parts;
        out.open_edges              = this->open_edges          + rhs.open_edges;
        out.volume                  = this->volume              + rhs.volume;
        out.repaired_errors.merge(rhs.repaired_errors);
        return out;
      }
    }

    bool manifold() const { return open_edges == 0; }
    bool repaired() const { return repaired_errors.repaired(); }
};

class TriangleMesh
{
public:
    TriangleMesh() = default;
    TriangleMesh(const std::vector<Vec3f> &vertices, const std::vector<Vec3i32> &faces);
    TriangleMesh(std::vector<Vec3f> &&vertices, const std::vector<Vec3i32> &&faces);
    explicit TriangleMesh(const indexed_triangle_set &M);
    explicit TriangleMesh(indexed_triangle_set &&M, const RepairedMeshErrors& repaired_errors = RepairedMeshErrors());
    void clear() { this->its.clear(); this->m_stats.clear(); }
    bool from_stl(stl_file& stl, bool repair = true);
    bool  ReadSTLFile(const char *input_file, bool repair = true, ImportstlProgressFn stlFn = nullptr, int custom_header_length = 80);
    bool write_ascii(const char* output_file);
    bool write_binary(const char* output_file);
    float volume();
    void WriteOBJFile(const char* output_file) const;
    void scale(float factor);
    void scale(const Vec3f &versor);
    void translate(float x, float y, float z);
    void translate(const Vec3f &displacement);
    void rotate(float angle, const Axis &axis);
    void rotate(float angle, const Vec3d& axis);
    void rotate_x(float angle) { this->rotate(angle, X); }
    void rotate_y(float angle) { this->rotate(angle, Y); }
    void rotate_z(float angle) { this->rotate(angle, Z); }
    void mirror(const Axis axis);
    void mirror_x() { this->mirror(X); }
    void mirror_y() { this->mirror(Y); }
    void mirror_z() { this->mirror(Z); }
    void transform(const Transform3d& t, bool fix_left_handed = false);
    void transform(const Matrix3d& t, bool fix_left_handed = false);
    // Flip triangles, negate volume.
    void flip_triangles();
    void align_to_origin();
    void rotate(double angle, Point* center);
    std::vector<TriangleMesh> split() const;
    void merge(const TriangleMesh &mesh);
    ExPolygons horizontal_projection() const;
    // 2D convex hull of a 3D mesh projected into the Z=0 plane.
    Polygon convex_hull() const;
    BoundingBoxf3 bounding_box() const;
    // Returns the bbox of this TriangleMesh transformed by the given transformation
    BoundingBoxf3 transformed_bounding_box(const Transform3d &trafo) const;
    // Variant returning the bbox of the part of this TriangleMesh above the given world_min_z
    BoundingBoxf3 transformed_bounding_box(const Transform3d& trafo, double world_min_z) const;
    // Return the size of the mesh in coordinates.
    Vec3d size() const { return m_stats.size.cast<double>(); }
    /// Return the center of the related bounding box.
    Vec3d center() const { return this->bounding_box().center(); }
    // Returns the convex hull of this TriangleMesh
    TriangleMesh convex_hull_3d() const;
    // Slice this mesh at the provided Z levels and return the vector
    std::vector<ExPolygons> slice(const std::vector<double>& z) const;
    size_t facets_count() const { assert(m_stats.number_of_facets == this->its.indices.size()); return m_stats.number_of_facets; }
    bool   empty() const { return this->facets_count() == 0; }
    bool   repaired() const;
    bool   is_splittable() const;
    // Estimate of the memory occupied by this structure, important for keeping an eye on the Undo / Redo stack allocation.
    size_t memsize() const;

    // Used by the Undo / Redo stack, legacy interface. As of now there is nothing cached at TriangleMesh,
    // but we may decide to cache some data in the future (for example normals), thus we keep the interface in place.
    // Release optional data from the mesh if the object is on the Undo / Redo stack only. Returns the amount of memory released.
    size_t release_optional() { return 0; }
    // Restore optional data possibly released by release_optional().
    void   restore_optional() {}

    const TriangleMeshStats& stats() const { return m_stats; }

    void set_init_shift(const Vec3d &offset) { m_init_shift = offset; }
    Vec3d get_init_shift() const { return m_init_shift; }

    indexed_triangle_set its;

private:
    TriangleMeshStats m_stats;
    Vec3d m_init_shift {0.0, 0.0, 0.0};
};

变量its: 保存原始的索引三角集

变量m_stats:三角网格统计,保存三角面片数量、体积、边框等。

3.1 函数its_volume:计算索引三角集体积

float its_volume(const indexed_triangle_set &its)
{
    if (its.empty()) return 0.;

    // Choose a point, any point as the reference.
    auto p0 = its.vertices.front();
    float volume = 0.f;
    for (size_t i = 0; i < its.indices.size(); ++ i) {
        // Do dot product to get distance from point to plane.
        its_triangle triangle = its_triangle_vertices(its, i);
        Vec3f U = triangle[1] - triangle[0];
        Vec3f V = triangle[2] - triangle[0];
        Vec3f C = U.cross(V);
        Vec3f normal = C.normalized();
        float area = 0.5 * C.norm();
        float height = normal.dot(triangle[0] - p0);
        volume += (area * height) / 3.0f;
    }

    return volume;
}

        以p0做为一个起始点,计算与其它三角型组合起来的三角锥的面积之和。        

        循环中:area就是计算三角的面积,normal.dot(),是一个点积即内积,内积的几何意义为向量(triangle[0]-p0)在normal方向上的投影,即三角锥的高。最后三角锥的体积为1/3 s h

3.2 顶点索引到面片索引

struct VertexFaceIndex
{
public:
    using iterator = std::vector<size_t>::const_iterator;

    VertexFaceIndex(const indexed_triangle_set &its) { this->create(its); }
    VertexFaceIndex() {}

    void create(const indexed_triangle_set &its);
    void clear() { m_vertex_to_face_start.clear(); m_vertex_faces_all.clear(); }

    // Iterators of face indices incident with the input vertex_id.
    iterator begin(size_t vertex_id) const throw() { return m_vertex_faces_all.begin() + m_vertex_to_face_start[vertex_id]; }
    iterator end  (size_t vertex_id) const throw() { return m_vertex_faces_all.begin() + m_vertex_to_face_start[vertex_id + 1]; }
    // Vertex incidence.
    size_t   count(size_t vertex_id) const throw() { return m_vertex_to_face_start[vertex_id + 1] - m_vertex_to_face_start[vertex_id]; }

    const Range<iterator> operator[](size_t vertex_id) const { return {begin(vertex_id), end(vertex_id)}; }

private:
    std::vector<size_t>     m_vertex_to_face_start;
    std::vector<size_t>     m_vertex_faces_all;
};

void VertexFaceIndex::create(const indexed_triangle_set &its)
{
    m_vertex_to_face_start.assign(its.vertices.size() + 1, 0);
    // 1) Calculate vertex incidence by scatter.
    for (auto &face : its.indices) {
        ++ m_vertex_to_face_start[face(0) + 1];
        ++ m_vertex_to_face_start[face(1) + 1];
        ++ m_vertex_to_face_start[face(2) + 1];
    }
    // 2) Prefix sum to calculate offsets to m_vertex_faces_all.
    for (size_t i = 2; i < m_vertex_to_face_start.size(); ++ i)
        m_vertex_to_face_start[i] += m_vertex_to_face_start[i - 1];
    // 3) Scatter indices of faces incident to a vertex into m_vertex_faces_all.
    m_vertex_faces_all.assign(m_vertex_to_face_start.back(), 0);
    for (size_t face_idx = 0; face_idx < its.indices.size(); ++ face_idx) {
        auto &face = its.indices[face_idx];
        for (int i = 0; i < 3; ++ i)
            m_vertex_faces_all[m_vertex_to_face_start[face(i)] ++] = face_idx;
    }
    // 4) The previous loop modified m_vertex_to_face_start. Revert the change.
    for (auto i = int(m_vertex_to_face_start.size()) - 1; i > 0; -- i)
        m_vertex_to_face_start[i] = m_vertex_to_face_start[i - 1];
    m_vertex_to_face_start.front() = 0;
}

函数create中,使用散列聚集算法,将面索引散列到m_vertex_faces_all中,将顶点索引到面索引的值保存m_vertex_to_face_start中。

        1、设置顶点到面起始位置变量m_vertex_to_face_start的空间大小为顶点数量+1。

        2、遍历三角面片数组,将各个顶点出现的次数到m_vertex_to_face_start中。

        3、将各个顶点出现的次数累加到后一个位置中,这样在最末尾的变量中可以得到所有顶点出现的次数。

        4、面索引散列表的大小为所有顶点出现的次数和。

        5、将面索引写到m_vertex_faces_all中。

## 具体例子说明
假设我们有一个简单的三角形网格,包含4个顶点和2个三角形面:

### 网格数据
- 顶点数组 : vertices = [V0, V1, V2, V3] (共4个顶点)
- 面索引数组 :
  - face0 = [0, 1, 2] (三角形使用顶点V0、V1、V2)
  - face1 = [1, 2, 3] (三角形使用顶点V1、V2、V3)
### 分配过程分步演示 步骤1:前缀和计算完成后
经过前面的散射统计和前缀和计算, m_vertex_to_face_start 数组的状态为:

顶点索引:    0   1   2   3   4
值:               0   1   3   5   6

这表示:

- 顶点V0:有1个面引用,在全局数组中的起始位置是0
- 顶点V1:有2个面引用,起始位置是1
- 顶点V2:有2个面引用,起始位置是3
- 顶点V3:有1个面引用,起始位置是5
- 最后一个值6表示总共需要存储6个面索引

步骤2:初始化全局数组

m_vertex_faces_all.assign(6, 0);  // 创建大小为6的数组,初始化为0
此时数组状态: [0, 0, 0, 0, 0, 0]
 步骤3:处理第一个面(face0 = [0, 1, 2])
处理顶点0 :

- m_vertex_to_face_start[0] 当前值为0
- 执行 m_vertex_faces_all[0] = 0 (存储面索引0)
- 然后 m_vertex_to_face_start[0] 递增为1
处理顶点1 :

- m_vertex_to_face_start[1] 当前值为1
- 执行 m_vertex_faces_all[1] = 0
- 然后 m_vertex_to_face_start[1] 递增为2
处理顶点2 :

- m_vertex_to_face_start[2] 当前值为3
- 执行 m_vertex_faces_all[3] = 0
- 然后 m_vertex_to_face_start[2] 递增为4
此时数组状态: [0, 0, 0, 0, 0, 0] → [0, 0, 0, 0, 0, 0] (实际存储了面索引0)
 步骤4:处理第二个面(face1 = [1, 2, 3])
处理顶点1 :

- m_vertex_to_face_start[1] 当前值为2
- 执行 m_vertex_faces_all[2] = 1
- 然后 m_vertex_to_face_start[1] 递增为3
处理顶点2 :

- m_vertex_to_face_start[2] 当前值为4
- 执行 m_vertex_faces_all[4] = 1
- 然后 m_vertex_to_face_start[2] 递增为5
处理顶点3 :

- m_vertex_to_face_start[3] 当前值为5
- 执行 m_vertex_faces_all[5] = 1
- 然后 m_vertex_to_face_start[3] 递增为6
### 最终结果
分配完成后,数据结构如下:

m_m_vertex_to_face_start数组:[0, 1, 3, 5, 6]

m_vertex_faces_all数组 :          [0, 0, 1, 0, 1, 1]

每个顶点对应的面索引 :

- 顶点0 :索引范围[0, 1) → 面索引 [0]
- 顶点1 :索引范围[1, 3) → 面索引 [0, 1]
- 顶点2 :索引范围[3, 5) → 面索引 [0, 1]
- 顶点3 :索引范围[5, 6) → 面索引 [1]

二、Model 模型

1、ModelVolume 模型体积


// An object STL, or a modifier volume, over which a different set of parameters shall be applied.
// ModelVolume instances are owned by a ModelObject.
class ModelVolume final : public ObjectBase
{
public:
    std::string         name;
    // struct used by reload from disk command to recover data from disk
    struct Source
    {
        std::string input_file;
        int object_idx{ -1 };
        int volume_idx{ -1 };
        Vec3d mesh_offset{ Vec3d::Zero() };
        Geometry::Transformation transform;
        bool is_converted_from_inches{ false };
        bool is_converted_from_meters{ false };
        bool is_from_builtin_objects{ false };

        template<class Archive> void serialize(Archive& ar) {
            //FIXME Vojtech: Serialize / deserialize only if the Source is set.
            // likely testing input_file or object_idx would be sufficient.
            ar(input_file, object_idx, volume_idx, mesh_offset, transform, is_converted_from_inches, is_converted_from_meters, is_from_builtin_objects);
        }
    };
    Source              source;

    // struct used by cut command
    // It contains information about connetors
    struct CutInfo
    {
        bool             is_from_upper{true};
        bool             is_connector{false};
        bool             is_processed{true};
        CutConnectorType connector_type{CutConnectorType::Plug};
        float            radius{0.f};
        float            height{0.f};
        float            radius_tolerance{0.f}; // [0.f : 1.f]
        float            height_tolerance{0.f}; // [0.f : 1.f]

        CutInfo() = default;
        CutInfo(CutConnectorType type, float radius_, float height_, float rad_tolerance, float h_tolerance, bool processed = false)
            : is_connector(true), is_processed(processed), connector_type(type)
            , radius(radius_), height(height_), radius_tolerance(rad_tolerance), height_tolerance(h_tolerance)
        {}

        void set_processed() { is_processed = true; }
        void invalidate() { is_connector = false; }
        void reset_from_upper() { is_from_upper = true; }
        template<class Archive> inline void serialize(Archive &ar) { ar(is_connector, is_processed, connector_type, radius_tolerance, height_tolerance); }
    };
    CutInfo cut_info;

    bool is_from_upper() const { return cut_info.is_from_upper; }
    void reset_from_upper() { cut_info.reset_from_upper(); }

    bool is_cut_connector() const { return cut_info.is_processed && cut_info.is_connector; }
    void invalidate_cut_info() { cut_info.invalidate(); }

    // The triangular model.
    const TriangleMesh& mesh() const { return *m_mesh.get(); }
    const TriangleMesh* mesh_ptr() const { return m_mesh.get(); }
    void                set_mesh(const TriangleMesh &mesh) { m_mesh = std::make_shared<const TriangleMesh>(mesh); }
    void                set_mesh(TriangleMesh &&mesh) { m_mesh = std::make_shared<const TriangleMesh>(std::move(mesh)); }
    void                set_mesh(const indexed_triangle_set &mesh) { m_mesh = std::make_shared<const TriangleMesh>(mesh); }
    void                set_mesh(indexed_triangle_set &&mesh) { m_mesh = std::make_shared<const TriangleMesh>(std::move(mesh)); }
    void                set_mesh(std::shared_ptr<const TriangleMesh> &mesh) { m_mesh = mesh; }
    void                set_mesh(std::unique_ptr<const TriangleMesh> &&mesh) { m_mesh = std::move(mesh); }
	void				reset_mesh() { m_mesh = std::make_shared<const TriangleMesh>(); }
    const std::shared_ptr<const TriangleMesh> &get_mesh_shared_ptr() const { return m_mesh; }
    // Configuration parameters specific to an object model geometry or a modifier volume,
    // overriding the global Slic3r settings and the ModelObject settings.
    ModelConfigObject	config;

    // List of mesh facets to be supported/unsupported.
    FacetsAnnotation    supported_facets;

    // List of seam enforcers/blockers.
    FacetsAnnotation    seam_facets;

    // List of mesh facets painted for MMU segmentation.
    FacetsAnnotation    mmu_segmentation_facets;

    // BBS: quick access for volume extruders, 1 based
    mutable std::vector<int> mmuseg_extruders;
    mutable Timestamp        mmuseg_ts;

    // List of exterior faces
    FacetsAnnotation    exterior_facets;


    // Is set only when volume is Embossed Shape
    // Contain 2d information about embossed shape to be editabled
    std::optional<EmbossShape> emboss_shape;
    // A parent object owning this modifier volume.
    ModelObject*        get_object() const { return this->object; }
    ModelVolumeType     type() const { return m_type; }
    void                set_type(const ModelVolumeType t) { m_type = t; }
	bool                is_model_part()         const { return m_type == ModelVolumeType::MODEL_PART; }
    bool                is_negative_volume()    const { return m_type == ModelVolumeType::NEGATIVE_VOLUME; }
	bool                is_modifier()           const { return m_type == ModelVolumeType::PARAMETER_MODIFIER; }
	bool                is_support_enforcer()   const { return m_type == ModelVolumeType::SUPPORT_ENFORCER; }
	bool                is_support_blocker()    const { return m_type == ModelVolumeType::SUPPORT_BLOCKER; }
	bool                is_support_modifier()   const { return m_type == ModelVolumeType::SUPPORT_BLOCKER || m_type == ModelVolumeType::SUPPORT_ENFORCER; }
    bool                is_svg() const { return emboss_shape.has_value(); }
    bool                is_the_only_one_part() const; // behave like an object
    t_model_material_id material_id() const { return m_material_id; }
    void                set_material_id(t_model_material_id material_id);
    void                reset_extra_facets();
    ModelMaterial*      material() const;
    void                set_material(t_model_material_id material_id, const ModelMaterial &material);
    // Extract the current extruder ID based on this ModelVolume's config and the parent ModelObject's config.
    // Extruder ID is only valid for FFF. Returns -1 for SLA or if the extruder ID is not applicable (support volumes).
    int                 extruder_id() const;

    bool                is_splittable() const;

    void apply_tolerance();

    // BBS
    std::vector<int>    get_extruders() const;
    void                update_extruder_count(size_t extruder_count);
    void                update_extruder_count_when_delete_filament(size_t extruder_count, size_t filament_id, int replace_filament_id = -1);

    // Split this volume, append the result to the object owning this volume.
    // Return the number of volumes created from this one.
    // This is useful to assign different materials to different volumes of an object.
    size_t              split(unsigned int max_extruders, float scale_det = 1.f);
    void                translate(double x, double y, double z) { translate(Vec3d(x, y, z)); }
    void                translate(const Vec3d& displacement);
    void                scale(const Vec3d& scaling_factors);
    void                scale(double x, double y, double z) { scale(Vec3d(x, y, z)); }
    void                scale(double s) { scale(Vec3d(s, s, s)); }
    void                rotate(double angle, Axis axis);
    void                rotate(double angle, const Vec3d& axis);
    void                mirror(Axis axis);

    // This method could only be called before the meshes of this ModelVolumes are not shared!
    void                scale_geometry_after_creation(const Vec3f &versor);
    void                scale_geometry_after_creation(const float scale) { this->scale_geometry_after_creation(Vec3f(scale, scale, scale)); }

    // Translates the mesh and the convex hull so that the origin of their vertices is in the center of this volume's bounding box.
    // Attention! This method may only be called just after ModelVolume creation! It must not be called once the TriangleMesh of this ModelVolume is shared!
    void                center_geometry_after_creation(bool update_source_offset = true);

    void                calculate_convex_hull();
    const TriangleMesh& get_convex_hull() const;
    const std::shared_ptr<const TriangleMesh>& get_convex_hull_shared_ptr() const { return m_convex_hull; }
    //BBS: add convex_hell_2d related logic
    const Polygon& get_convex_hull_2d(const Transform3d &trafo_instance) const;
    void invalidate_convex_hull_2d()
    {
        m_convex_hull_2d.clear();
    }

    // Get count of errors in the mesh
    int                 get_repaired_errors_count() const;

    // Helpers for loading / storing into AMF / 3MF files.
    static ModelVolumeType type_from_string(const std::string &s);
    static std::string  type_to_string(const ModelVolumeType t);

    const Geometry::Transformation& get_transformation() const { return m_transformation; }
    void set_transformation(const Geometry::Transformation& transformation) { m_transformation = transformation; }
    void set_transformation(const Transform3d &trafo) { m_transformation.set_from_transform(trafo); }

    const Vec3d& get_offset() const { return m_transformation.get_offset(); }
    double get_offset(Axis axis) const { return m_transformation.get_offset(axis); }

    void set_offset(const Vec3d& offset) { m_transformation.set_offset(offset); }
    void set_offset(Axis axis, double offset) { m_transformation.set_offset(axis, offset); }

    const Vec3d& get_rotation() const { return m_transformation.get_rotation(); }
    double get_rotation(Axis axis) const { return m_transformation.get_rotation(axis); }

    void set_rotation(const Vec3d& rotation) { m_transformation.set_rotation(rotation); }

    const Vec3d &get_scaling_factor() const { return m_transformation.get_scaling_factor(); }
    double get_scaling_factor(Axis axis) const { return m_transformation.get_scaling_factor(axis); }

    void set_scaling_factor(const Vec3d& scaling_factor) { m_transformation.set_scaling_factor(scaling_factor); }
    void set_scaling_factor(Axis axis, double scaling_factor) { m_transformation.set_scaling_factor(axis, scaling_factor); }

    const Vec3d& get_mirror() const { return m_transformation.get_mirror(); }
    double get_mirror(Axis axis) const { return m_transformation.get_mirror(axis); }
    bool is_left_handed() const { return m_transformation.is_left_handed(); }

    void set_mirror(const Vec3d& mirror) { m_transformation.set_mirror(mirror); }
    void set_mirror(Axis axis, double mirror) { m_transformation.set_mirror(axis, mirror); }
    void convert_from_imperial_units();
    void convert_from_meters();

    void set_text_info(const TextInfo& text_info) { m_text_info = text_info; }
    const TextInfo& get_text_info() const { return m_text_info; }
    bool  is_text() const { return !m_text_info.m_text.empty(); }
    const Transform3d &get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const;
	void set_new_unique_id() {
        ObjectBase::set_new_unique_id();
        this->config.set_new_unique_id();
        this->supported_facets.set_new_unique_id();
        this->seam_facets.set_new_unique_id();
        this->mmu_segmentation_facets.set_new_unique_id();
    }

    bool is_fdm_support_painted() const { return !this->supported_facets.empty(); }
    bool is_seam_painted() const { return !this->seam_facets.empty(); }
    bool is_mm_painted() const { return !this->mmu_segmentation_facets.empty(); }

protected:
	friend class Print;
    friend class SLAPrint;
    friend class Model;
	friend class ModelObject;
    friend void model_volume_list_update_supports(ModelObject& model_object_dst, const ModelObject& model_object_new);

	// Copies IDs of both the ModelVolume and its config.
	explicit ModelVolume(const ModelVolume &rhs) = default;
    void     set_model_object(ModelObject *model_object) { object = model_object; }
	void 	 assign_new_unique_ids_recursive() override;
    void     transform_this_mesh(const Transform3d& t, bool fix_left_handed);
    void     transform_this_mesh(const Matrix3d& m, bool fix_left_handed);

private:
    // Parent object owning this ModelVolume.
    ModelObject*                    	object;
    // The triangular model.
    std::shared_ptr<const TriangleMesh> m_mesh;
    // Is it an object to be printed, or a modifier volume?
    ModelVolumeType                 	m_type;
    t_model_material_id             	m_material_id;
    // The convex hull of this model's mesh.
    std::shared_ptr<const TriangleMesh> m_convex_hull;
    //BBS: add convex hull 2d related logic
    mutable Polygon                     m_convex_hull_2d; //BBS, used for convex_hell_2d acceleration
    mutable Transform3d                 m_cached_trans_matrix{Transform3d::Identity()}; // BBS, used for convex_hell_2d acceleration
    mutable Polygon                     m_cached_2d_polygon;   //BBS, used for convex_hell_2d acceleration
    Geometry::Transformation        	m_transformation;

    TextInfo m_text_info;

    //BBS: add convex_hell_2d related logic
    void  calculate_convex_hull_2d(const Geometry::Transformation &transformation) const;

    // flag to optimize the checking if the volume is splittable
    //     -1   ->   is unknown value (before first cheking)
    //      0   ->   is not splittable
    //      1   ->   is splittable
    mutable int               		m_is_splittable{ -1 };

	ModelVolume(ModelObject *object, const TriangleMesh &mesh, ModelVolumeType type = ModelVolumeType::MODEL_PART) : m_mesh(new TriangleMesh(mesh)), m_type(type), object(object)
    {
		assert(this->id().valid());
        assert(this->config.id().valid());
        assert(this->supported_facets.id().valid());
        assert(this->seam_facets.id().valid());
        assert(this->mmu_segmentation_facets.id().valid());
        assert(this->id() != this->config.id());
        assert(this->id() != this->supported_facets.id());
        assert(this->id() != this->seam_facets.id());
        assert(this->id() != this->mmu_segmentation_facets.id());
        if (mesh.facets_count() > 1)
            calculate_convex_hull();
    }
    ModelVolume(ModelObject *object, const std::shared_ptr<const TriangleMesh> &mesh, ModelVolumeType type = ModelVolumeType::MODEL_PART) : m_mesh(mesh), m_type(type), object(object)
    {
		assert(this->id().valid());
        assert(this->config.id().valid());
        assert(this->supported_facets.id().valid());
        assert(this->seam_facets.id().valid());
        assert(this->mmu_segmentation_facets.id().valid());
        assert(this->id() != this->config.id());
        assert(this->id() != this->supported_facets.id());
        assert(this->id() != this->seam_facets.id());
        assert(this->id() != this->mmu_segmentation_facets.id());
    }
    ModelVolume(ModelObject *object, TriangleMesh &&mesh, TriangleMesh &&convex_hull, ModelVolumeType type = ModelVolumeType::MODEL_PART) :
		m_mesh(new TriangleMesh(std::move(mesh))), m_convex_hull(new TriangleMesh(std::move(convex_hull))), m_type(type), object(object) {
		assert(this->id().valid());
        assert(this->config.id().valid());
        assert(this->supported_facets.id().valid());
        assert(this->seam_facets.id().valid());
        assert(this->mmu_segmentation_facets.id().valid());
        assert(this->id() != this->config.id());
        assert(this->id() != this->supported_facets.id());
        assert(this->id() != this->seam_facets.id());
        assert(this->id() != this->mmu_segmentation_facets.id());
	}

    // Copying an existing volume, therefore this volume will get a copy of the ID assigned.
    ModelVolume(ModelObject *object, const ModelVolume &other) :
        ObjectBase(other),
        name(other.name), source(other.source), m_mesh(other.m_mesh), m_convex_hull(other.m_convex_hull),
        config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation),
        supported_facets(other.supported_facets), seam_facets(other.seam_facets), mmu_segmentation_facets(other.mmu_segmentation_facets),
        m_text_info(other.m_text_info), emboss_shape(other.emboss_shape)
    {
		assert(this->id().valid());
        assert(this->config.id().valid());
        assert(this->supported_facets.id().valid());
        assert(this->seam_facets.id().valid());
        assert(this->mmu_segmentation_facets.id().valid());
        assert(this->id() != this->config.id());
        assert(this->id() != this->supported_facets.id());
        assert(this->id() != this->seam_facets.id());
        assert(this->id() != this->mmu_segmentation_facets.id());
		assert(this->id() == other.id());
        assert(this->config.id() == other.config.id());
        assert(this->supported_facets.id() == other.supported_facets.id());
        assert(this->seam_facets.id() == other.seam_facets.id());
        assert(this->mmu_segmentation_facets.id() == other.mmu_segmentation_facets.id());
        this->set_material_id(other.material_id());
    }
    // Providing a new mesh, therefore this volume will get a new unique ID assigned.
    ModelVolume(ModelObject *object, const ModelVolume &other, const TriangleMesh &&mesh) :
        name(other.name), source(other.source), m_mesh(new TriangleMesh(std::move(mesh))), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation),
        emboss_shape(other.emboss_shape)
    {
		assert(this->id().valid());
        assert(this->config.id().valid());
        assert(this->supported_facets.id().valid());
        assert(this->seam_facets.id().valid());
        assert(this->mmu_segmentation_facets.id().valid());
        assert(this->id() != this->config.id());
        assert(this->id() != this->supported_facets.id());
        assert(this->id() != this->seam_facets.id());
        assert(this->id() != this->mmu_segmentation_facets.id());
		assert(this->id() != other.id());
        assert(this->config.id() == other.config.id());
        this->set_material_id(other.material_id());
        this->config.set_new_unique_id();
        if (mesh.facets_count() > 1)
            calculate_convex_hull();
		assert(this->config.id().valid());
        assert(this->config.id() != other.config.id());
        assert(this->supported_facets.id() != other.supported_facets.id());
        assert(this->seam_facets.id() != other.seam_facets.id());
        assert(this->mmu_segmentation_facets.id() != other.mmu_segmentation_facets.id());
        assert(this->id() != this->config.id());
        assert(this->supported_facets.empty());
        assert(this->seam_facets.empty());
        assert(this->mmu_segmentation_facets.empty());
    }

    ModelVolume& operator=(ModelVolume &rhs) = delete;

	friend class cereal::access;
	friend class UndoRedo::StackImpl;
	// Used for deserialization, therefore no IDs are allocated.
	ModelVolume() : ObjectBase(-1), config(-1), supported_facets(-1), seam_facets(-1), mmu_segmentation_facets(-1), object(nullptr) {
		assert(this->id().invalid());
        assert(this->config.id().invalid());
        assert(this->supported_facets.id().invalid());
        assert(this->seam_facets.id().invalid());
        assert(this->mmu_segmentation_facets.id().invalid());
	}
	template<class Archive> void load(Archive &ar) {
		bool has_convex_hull;
        // BBS: add backup, check modify
        bool mesh_changed = false;
        auto tr = m_transformation;
        ar(name, source, m_mesh, m_type, m_material_id, m_transformation, m_is_splittable, has_convex_hull, m_text_info, cut_info);
        mesh_changed |= !(tr == m_transformation);
        auto t = supported_facets.timestamp();
        cereal::load_by_value(ar, supported_facets);
        mesh_changed |= t != supported_facets.timestamp();
        t = seam_facets.timestamp();
        cereal::load_by_value(ar, seam_facets);
        mesh_changed |= t != seam_facets.timestamp();
        t = mmu_segmentation_facets.timestamp();
        cereal::load_by_value(ar, mmu_segmentation_facets);
        mesh_changed |= t != mmu_segmentation_facets.timestamp();
        cereal::load_by_value(ar, config);
        cereal::load(ar, emboss_shape);
		assert(m_mesh);
		if (has_convex_hull) {
			cereal::load_optional(ar, m_convex_hull);
			if (! m_convex_hull && ! m_mesh->empty())
				// The convex hull was released from the Undo / Redo stack to conserve memory. Recalculate it.
				this->calculate_convex_hull();
		} else
			m_convex_hull.reset();
        if (mesh_changed && object)
            Slic3r::save_object_mesh(*object);
	}
	template<class Archive> void save(Archive &ar) const {
		bool has_convex_hull = m_convex_hull.get() != nullptr;
        ar(name, source, m_mesh, m_type, m_material_id, m_transformation, m_is_splittable, has_convex_hull, m_text_info, cut_info);
        cereal::save_by_value(ar, supported_facets);
        cereal::save_by_value(ar, seam_facets);
        cereal::save_by_value(ar, mmu_segmentation_facets);
        cereal::save_by_value(ar, config);
        cereal::save(ar, emboss_shape);
		if (has_convex_hull)
			cereal::save_optional(ar, m_convex_hull);
	}
};

成员变量:

 m_mesh:在构造函数是会创建一个智能指针,用来保存TriangleMesh。

object:用来保存上一级对象指针,在构造函数中传进来,此模型体积类会保存在object->volumes数组中。可以通过object->add_volume(mesh)来创建一个ModelVolume对象。

name:用来保存名称

2、ModelInstance 模型实例

class ModelInstance final : public ObjectBase
{
private:
    Geometry::Transformation m_transformation;
    Geometry::Transformation m_assemble_transformation;
    Vec3d m_offset_to_assembly{ 0.0, 0.0, 0.0 };
    bool m_assemble_initialized;

public:
    // flag showing the position of this instance with respect to the print volume (set by Print::validate() using ModelObject::check_instances_print_volume_state())
    ModelInstanceEPrintVolumeState print_volume_state;
    // Whether or not this instance is printable
    bool printable;
    bool use_loaded_id_for_label {false};
    int arrange_order = 0; // BBS
    size_t loaded_id = 0; // BBS

    size_t get_labeled_id() const
    {
        if (use_loaded_id_for_label && (loaded_id > 0))
            return loaded_id;
        else
            return id().id;
    }

    ModelObject* get_object() const { return this->object; }

    const Geometry::Transformation& get_transformation() const { return m_transformation; }
    void set_transformation(const Geometry::Transformation& transformation) { m_transformation = transformation; }

    const Geometry::Transformation& get_assemble_transformation() const { return m_assemble_transformation; }
    void set_assemble_transformation(const Geometry::Transformation& transformation) {
        m_assemble_initialized = true;
        m_assemble_transformation = transformation;
    }
    void set_assemble_from_transform(const Transform3d& transform) {
        m_assemble_initialized = true;
        m_assemble_transformation.set_from_transform(transform);
    }
    const Vec3d& get_assemble_offset() {return m_assemble_transformation.get_offset(); }
    void         set_assemble_offset(const Vec3d &offset){ m_assemble_initialized = true;m_assemble_transformation.set_offset(offset);}
    void set_assemble_rotation(const Vec3d &rotation) { m_assemble_transformation.set_rotation(rotation); }
    void rotate_assemble(double angle, const Vec3d& axis) {
        m_assemble_transformation.set_rotation(m_assemble_transformation.get_rotation() + Geometry::extract_euler_angles(Eigen::Quaterniond(Eigen::AngleAxisd(angle, axis)).toRotationMatrix()));
    }

    // BBS
    void set_offset_to_assembly(const Vec3d& offset) { m_offset_to_assembly = offset; }
    const Vec3d& get_offset_to_assembly() const { return m_offset_to_assembly; }

    const Vec3d& get_offset() const { return m_transformation.get_offset(); }
    double get_offset(Axis axis) const { return m_transformation.get_offset(axis); }

    void set_offset(const Vec3d& offset) { m_transformation.set_offset(offset); }
    void set_offset(Axis axis, double offset) { m_transformation.set_offset(axis, offset); }

    const Vec3d& get_rotation() const { return m_transformation.get_rotation(); }
    double get_rotation(Axis axis) const { return m_transformation.get_rotation(axis); }

    void set_rotation(const Vec3d& rotation) { m_transformation.set_rotation(rotation); }

    // BBS
    void rotate(Matrix3d rotation_matrix);

    const Vec3d& get_scaling_factor() const { return m_transformation.get_scaling_factor(); }
    double get_scaling_factor(Axis axis) const { return m_transformation.get_scaling_factor(axis); }

    void set_scaling_factor(const Vec3d& scaling_factor) { m_transformation.set_scaling_factor(scaling_factor); }
    void set_scaling_factor(Axis axis, double scaling_factor) { m_transformation.set_scaling_factor(axis, scaling_factor); }

    const Vec3d& get_mirror() const { return m_transformation.get_mirror(); }
    double get_mirror(Axis axis) const { return m_transformation.get_mirror(axis); }
	bool is_left_handed() const { return m_transformation.is_left_handed(); }

    void set_mirror(const Vec3d& mirror) { m_transformation.set_mirror(mirror); }
    void set_mirror(Axis axis, double mirror) { m_transformation.set_mirror(axis, mirror); }

    // To be called on an external mesh
    void transform_mesh(TriangleMesh* mesh, bool dont_translate = false) const;
    // Calculate a bounding box of a transformed mesh. To be called on an external mesh.
    BoundingBoxf3 transform_mesh_bounding_box(const TriangleMesh& mesh, bool dont_translate = false) const;
    // Transform an external bounding box.
    BoundingBoxf3 transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate = false) const;
    BoundingBoxf3 transform_bounding_box_in_assembly_view(const BoundingBoxf3 &bbox, bool dont_translate = false) const;
    // Transform an external vector.
    Vec3d transform_vector(const Vec3d& v, bool dont_translate = false) const;
    // To be called on an external polygon. It does not translate the polygon, only rotates and scales.
    void transform_polygon(Polygon* polygon) const;

    const Transform3d &get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const;
    bool is_printable() const { return object->printable && printable && (print_volume_state == ModelInstancePVS_Inside); }
    bool is_assemble_initialized() { return m_assemble_initialized; }

    //BBS
    double get_auto_brim_width(double deltaT, double adhension) const;
    double get_auto_brim_width() const;
    // BBS
    Polygon convex_hull_2d();
    void invalidate_convex_hull_2d();

    // Getting the input polygon for arrange
    // We use void* as input type to avoid including Arrange.hpp in Model.hpp.
    void get_arrange_polygon(void *arrange_polygon, const Slic3r::DynamicPrintConfig &config = Slic3r::DynamicPrintConfig()) const;

    // Apply the arrange result on the ModelInstance
    void apply_arrange_result(const Vec2d &offs, double rotation);

protected:
    friend class Print;
    friend class SLAPrint;
    friend class Model;
    friend class ModelObject;

    explicit ModelInstance(const ModelInstance &rhs) = default;
    void     set_model_object(ModelObject *model_object) { object = model_object; }

private:
    // Parent object, owning this instance.
    ModelObject* object;
    Polygon convex_hull; // BBS

    // Constructor, which assigns a new unique ID.
    explicit ModelInstance(ModelObject* object) : print_volume_state(ModelInstancePVS_Inside), printable(true), object(object), m_assemble_initialized(false) { assert(this->id().valid()); }
    // Constructor, which assigns a new unique ID.
    explicit ModelInstance(ModelObject *object, const ModelInstance &other) :
        m_transformation(other.m_transformation)
        , m_assemble_transformation(other.m_assemble_transformation)
        , m_offset_to_assembly(other.m_offset_to_assembly)
        , print_volume_state(ModelInstancePVS_Inside)
        , printable(other.printable)
        , object(object)
        , m_assemble_initialized(false) { assert(this->id().valid() && this->id() != other.id()); }

    explicit ModelInstance(ModelInstance &&rhs) = delete;
    ModelInstance& operator=(const ModelInstance &rhs) = delete;
    ModelInstance& operator=(ModelInstance &&rhs) = delete;

	friend class cereal::access;
	friend class UndoRedo::StackImpl;
	// Used for deserialization, therefore no IDs are allocated.
	ModelInstance() : ObjectBase(-1), object(nullptr) { assert(this->id().invalid()); }
    // BBS. Add added members to archive.
    template<class Archive> void serialize(Archive& ar) {
        ar(m_transformation, print_volume_state, printable, m_assemble_transformation, m_offset_to_assembly, m_assemble_initialized);
    }
};

成员变量

object:用来保存上一级对象指针,在构造函数中传进来,可以通过object->add_instance()来创建一个ModelInstance类对象,数据会保存在object->instances数组中。

每new出来一个ModelObject对象时,就需要让ModelObject通过add_instance函数创建一个ModelInstance对象,保存在instances数组中。

3、ModelObject 模型对象

class ModelObject final : public ObjectBase
{
public:
    std::string             name;
    //BBS: add module name for assemble
    std::string             module_name;
    std::string             input_file;    // XXX: consider fs::path
    // Instances of this ModelObject. Each instance defines a shift on the print bed, rotation around the Z axis and a uniform scaling.
    // Instances are owned by this ModelObject.
    ModelInstancePtrs       instances;
    // Printable and modifier volumes, each with its material ID and a set of override parameters.
    // ModelVolumes are owned by this ModelObject.
    ModelVolumePtrs         volumes;
    // Configuration parameters specific to a single ModelObject, overriding the global Slic3r settings.
    ModelConfigObject 		config;
    // Variation of a layer thickness for spans of Z coordinates + optional parameter overrides.
    t_layer_config_ranges   layer_config_ranges;
    // Profile of increasing z to a layer height, to be linearly interpolated when calculating the layers.
    // The pairs of <z, layer_height> are packed into a 1D array.
    LayerHeightProfile      layer_height_profile;
    // Whether or not this object is printable
    bool                    printable;

    // This vector holds position of selected support points for SLA. The data are
    // saved in mesh coordinates to allow using them for several instances.
    // The format is (x, y, z, point_size, supports_island)
    sla::SupportPoints      sla_support_points;
    // To keep track of where the points came from (used for synchronization between
    // the SLA gizmo and the backend).
    sla::PointsStatus       sla_points_status = sla::PointsStatus::NoPoints;

    // Holes to be drilled into the object so resin can flow out
    sla::DrainHoles         sla_drain_holes;

    BrimPoints              brim_points;

    /* This vector accumulates the total translation applied to the object by the
        center_around_origin() method. Callers might want to apply the same translation
        to new volumes before adding them to this object in order to preserve alignment
        when user expects that. */
    Vec3d                   origin_translation;

    // BBS: save for compare with new load volumes
    std::vector<ObjectID>   volume_ids;

    // Connectors to be added into the object before cut and are used to create a solid/negative volumes during a cut perform
    CutConnectors cut_connectors;
    CutObjectBase cut_id;

    std::vector<const ModelVolume*> const_volumes() const {return std::vector<const ModelVolume*>(volumes.begin(), volumes.end());}
    Model*                  get_model() { return m_model; }
    const Model*            get_model() const { return m_model; }
    // BBS: production extension
    int                     get_backup_id() const;
    template<typename T> const T* get_config_value(const DynamicPrintConfig& global_config, const std::string& config_option) {
        if (config.has(config_option))
            return static_cast<const T*>(config.option(config_option));
        else
            return global_config.option<T>(config_option);
    }

    ModelVolume*            add_volume(const TriangleMesh &mesh, bool modify_to_center_geometry = true);
    ModelVolume*            add_volume(TriangleMesh &&mesh, ModelVolumeType type = ModelVolumeType::MODEL_PART, bool modify_to_center_geometry = true);
    ModelVolume*            add_volume(const ModelVolume &volume, ModelVolumeType type = ModelVolumeType::INVALID);
    ModelVolume*            add_volume(const ModelVolume &volume, TriangleMesh &&mesh);
    ModelVolume*            add_volume_with_shared_mesh(const ModelVolume &other, ModelVolumeType type = ModelVolumeType::MODEL_PART);
    void                    delete_volume(size_t idx);
    void                    clear_volumes();
    void                    sort_volumes(bool full_sort);
    bool                    is_multiparts() const { return volumes.size() > 1; }
    // Checks if any of object volume is painted using the fdm support painting gizmo.
    bool                    is_fdm_support_painted() const;
    // Checks if any of object volume is painted using the seam painting gizmo.
    bool                    is_seam_painted() const;
    // Checks if any of object volume is painted using the multi-material painting gizmo.
    bool                    is_mm_painted() const;
    // This object may have a varying layer height by painting or by a table.
    // Even if true is returned, the layer height profile may be "flat" with no difference to default layering.
    bool                    has_custom_layering() const
        { return ! this->layer_config_ranges.empty() || ! this->layer_height_profile.empty(); }

    ModelInstance*          add_instance();
    ModelInstance*          add_instance(const ModelInstance &instance);
    ModelInstance*          add_instance(const Vec3d &offset, const Vec3d &scaling_factor, const Vec3d &rotation, const Vec3d &mirror);
    void                    delete_instance(size_t idx);
    void                    delete_last_instance();
    void                    clear_instances();

    // Returns the bounding box of the transformed instances.
    // This bounding box is approximate and not snug.
    // This bounding box is being cached.
    const BoundingBoxf3& bounding_box() const;
    const BoundingBoxf3& bounding_box_in_assembly_view() const;
    void invalidate_bounding_box() { m_bounding_box_valid = false; m_raw_bounding_box_valid = false; m_raw_mesh_bounding_box_valid = false; }

    // A mesh containing all transformed instances of this object.
    TriangleMesh mesh() const;
    // Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
    // Currently used by ModelObject::mesh() and to calculate the 2D envelope for 2D plater.
    TriangleMesh raw_mesh() const;
    // The same as above, but producing a lightweight indexed_triangle_set.
    indexed_triangle_set raw_indexed_triangle_set() const;
    // A transformed snug bounding box around the non-modifier object volumes, without the translation applied.
    // This bounding box is only used for the actual slicing.
    const BoundingBoxf3& raw_bounding_box() const;
    // A snug bounding box around the transformed non-modifier object volumes.
    BoundingBoxf3 instance_bounding_box(size_t instance_idx, bool dont_translate = false) const;
    BoundingBoxf3 instance_bounding_box(const ModelInstance& instance, bool dont_translate = false) const;

	// A snug bounding box of non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
	const BoundingBoxf3& raw_mesh_bounding_box() const;
	// A snug bounding box of non-transformed (non-rotated, non-scaled, non-translated) sum of all object volumes.
    BoundingBoxf3 full_raw_mesh_bounding_box() const;

    //BBS: add instance convex hull bounding box
    BoundingBoxf3 instance_convex_hull_bounding_box(size_t instance_idx, bool dont_translate = false) const;
    BoundingBoxf3 instance_convex_hull_bounding_box(const ModelInstance* instance, bool dont_translate = false) const;

    // Calculate 2D convex hull of of a projection of the transformed printable volumes into the XY plane.
    // This method is cheap in that it does not make any unnecessary copy of the volume meshes.
    // This method is used by the auto arrange function.
    Polygon       convex_hull_2d(const Transform3d &trafo_instance) const;

    void center_around_origin(bool include_modifiers = true);
    void ensure_on_bed(bool allow_negative_z = false);

    void translate_instances(const Vec3d& vector);
    void translate_instance(size_t instance_idx, const Vec3d& vector);
    void translate(const Vec3d &vector) { this->translate(vector(0), vector(1), vector(2)); }
    void translate(double x, double y, double z);
    void scale(const Vec3d &versor);
    void scale(const double s) { this->scale(Vec3d(s, s, s)); }
    void scale(double x, double y, double z) { this->scale(Vec3d(x, y, z)); }
    /// Scale the current ModelObject to fit by altering the scaling factor of ModelInstances.
    /// It operates on the total size by duplicating the object according to all the instances.
    /// \param size Sizef3 the size vector
    void scale_to_fit(const Vec3d &size);
    void rotate(double angle, Axis axis);
    void rotate(double angle, const Vec3d& axis);
    void mirror(Axis axis);

    // This method could only be called before the meshes of this ModelVolumes are not shared!
    void scale_mesh_after_creation(const float scale);
    void convert_units(ModelObjectPtrs&new_objects, ConversionType conv_type, std::vector<int> volume_idxs);

    size_t materials_count() const;
    size_t facets_count() const;
    size_t parts_count() const;

    bool                        is_cut() const { return cut_id.id().valid(); }
    bool                        has_connectors() const;
    static indexed_triangle_set get_connector_mesh(CutConnectorAttributes connector_attributes, CutConnectorParas para);
    void                        apply_cut_connectors(const std::string &name);
    // invalidate cut state for this object and its connectors/volumes
    void invalidate_cut();
    // delete volumes which are marked as connector for this object
    void delete_connectors();
    void synchronize_model_after_cut();
    void apply_cut_attributes(ModelObjectCutAttributes attributes);
    void clone_for_cut(ModelObject **obj);
    Transform3d calculate_cut_plane_inverse_matrix(const std::array<Vec3d, 4> &plane_points);
    void process_connector_cut(ModelVolume *volume,
                               const Transform3d & instance_matrix,
                               const Transform3d& cut_matrix,
                               ModelObjectCutAttributes attributes,
                               ModelObject *upper, ModelObject *lower,
                               std::vector<ModelObject *> &dowels,
                               Vec3d &local_dowels_displace);
    void process_modifier_cut(ModelVolume *            volume,
                              const Transform3d &      instance_matrix,
                              const Transform3d &      inverse_cut_matrix,
                              ModelObjectCutAttributes attributes,
                              ModelObject *            upper,
                              ModelObject *            lower);
    void process_volume_cut(ModelVolume *            volume,
                            const Transform3d &      instance_matrix,
                            const Transform3d &      cut_matrix,
                            ModelObjectCutAttributes attributes,
                            TriangleMesh &           upper_mesh,
                            TriangleMesh &           lower_mesh);
    void process_solid_part_cut(ModelVolume *            volume,
                                const Transform3d &      instance_matrix,
                                const Transform3d &      cut_matrix,
                                const std::array<Vec3d, 4> &plane_points,
                                ModelObjectCutAttributes attributes,
                                ModelObject *            upper,
                                ModelObject *            lower,
                                Vec3d &                  local_displace);

    // BBS: replace z with plane_points
    ModelObjectPtrs cut(size_t instance, std::array<Vec3d, 4> plane_points, ModelObjectCutAttributes attributes);
    // BBS
    ModelObjectPtrs segment(size_t instance, unsigned int max_extruders, double smoothing_alpha = 0.5, int segment_number = 5);
    void split(ModelObjectPtrs* new_objects);
    void merge();

    // BBS: Boolean opts - Musang King
    bool make_boolean(ModelObject *cut_object, const std::string &boolean_opts);

    ModelObjectPtrs merge_volumes(std::vector<int>& vol_indeces);//BBS
    // Support for non-uniform scaling of instances. If an instance is rotated by angles, which are not multiples of ninety degrees,
    // then the scaling in world coordinate system is not representable by the Geometry::Transformation structure.
    // This situation is solved by baking in the instance transformation into the mesh vertices.
    // Rotation and mirroring is being baked in. In case the instance scaling was non-uniform, it is baked in as well.
    void bake_xy_rotation_into_meshes(size_t instance_idx);

    double get_min_z() const;
    double get_max_z() const;
    double get_instance_min_z(size_t instance_idx) const;
    double get_instance_max_z(size_t instance_idx) const;

    // Print object statistics to console.
    void print_info() const;

    std::string get_export_filename() const;

    // Get full stl statistics for all object's meshes
    TriangleMeshStats get_object_stl_stats() const;
    // Get count of errors in the mesh( or all object's meshes, if volume index isn't defined)
    int         get_repaired_errors_count(const int vol_idx = -1) const;

private:
    friend class Model;
    // This constructor assigns new ID to this ModelObject and its config.
    explicit ModelObject(Model* model) : m_model(model), printable(true), origin_translation(Vec3d::Zero()),
        m_bounding_box_valid(false), m_raw_bounding_box_valid(false), m_raw_mesh_bounding_box_valid(false)
    {
        assert(this->id().valid());
        assert(this->config.id().valid());
        assert(this->layer_height_profile.id().valid());
    }
    explicit ModelObject(int) : ObjectBase(-1), config(-1), layer_height_profile(-1), m_model(nullptr), printable(true), origin_translation(Vec3d::Zero()), m_bounding_box_valid(false), m_raw_bounding_box_valid(false), m_raw_mesh_bounding_box_valid(false)
    {
        assert(this->id().invalid());
        assert(this->config.id().invalid());
        assert(this->layer_height_profile.id().invalid());
    }
	~ModelObject();
	void assign_new_unique_ids_recursive() override;

    // To be able to return an object from own copy / clone methods. Hopefully the compiler will do the "Copy elision"
    // (Omits copy and move(since C++11) constructors, resulting in zero - copy pass - by - value semantics).
    ModelObject(const ModelObject &rhs) : ObjectBase(-1), config(-1), layer_height_profile(-1), m_model(rhs.m_model) {
    	assert(this->id().invalid());
        assert(this->config.id().invalid());
        assert(this->layer_height_profile.id().invalid());
        assert(rhs.id() != rhs.config.id());
        assert(rhs.id() != rhs.layer_height_profile.id());
    	this->assign_copy(rhs);
    	assert(this->id().valid());
        assert(this->config.id().valid());
        assert(this->layer_height_profile.id().valid());
        assert(this->id() != this->config.id());
        assert(this->id() != this->layer_height_profile.id());
    	assert(this->id() == rhs.id());
        assert(this->config.id() == rhs.config.id());
        assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
    }
    explicit ModelObject(ModelObject &&rhs) : ObjectBase(-1), config(-1), layer_height_profile(-1) {
    	assert(this->id().invalid());
        assert(this->config.id().invalid());
        assert(this->layer_height_profile.id().invalid());
        assert(rhs.id() != rhs.config.id());
        assert(rhs.id() != rhs.layer_height_profile.id());
    	this->assign_copy(std::move(rhs));
    	assert(this->id().valid());
        assert(this->config.id().valid());
        assert(this->layer_height_profile.id().valid());
        assert(this->id() != this->config.id());
        assert(this->id() != this->layer_height_profile.id());
    	assert(this->id() == rhs.id());
        assert(this->config.id() == rhs.config.id());
        assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
    }
    ModelObject& operator=(const ModelObject &rhs) {
    	this->assign_copy(rhs);
    	m_model = rhs.m_model;
    	assert(this->id().valid());
        assert(this->config.id().valid());
        assert(this->layer_height_profile.id().valid());
        assert(this->id() != this->config.id());
        assert(this->id() != this->layer_height_profile.id());
    	assert(this->id() == rhs.id());
        assert(this->config.id() == rhs.config.id());
        assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
    	return *this;
    }
    ModelObject& operator=(ModelObject &&rhs) {
    	this->assign_copy(std::move(rhs));
    	m_model = rhs.m_model;
    	assert(this->id().valid());
        assert(this->config.id().valid());
        assert(this->layer_height_profile.id().valid());
        assert(this->id() != this->config.id());
        assert(this->id() != this->layer_height_profile.id());
    	assert(this->id() == rhs.id());
        assert(this->config.id() == rhs.config.id());
        assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
    	return *this;
    }
	void set_new_unique_id() {
        ObjectBase::set_new_unique_id();
        this->config.set_new_unique_id();
        this->layer_height_profile.set_new_unique_id();
    }

    OBJECTBASE_DERIVED_COPY_MOVE_CLONE(ModelObject)

    // Parent object, owning this ModelObject. Set to nullptr here, so the macros above will have it initialized.
    Model                *m_model = nullptr;

    // Bounding box, cached.
    mutable BoundingBoxf3 m_bounding_box;
    mutable BoundingBoxf3 m_bounding_box_in_assembly_view;
    mutable bool          m_bounding_box_valid;
    mutable BoundingBoxf3 m_raw_bounding_box;
    mutable bool          m_raw_bounding_box_valid;
    mutable BoundingBoxf3 m_raw_mesh_bounding_box;
    mutable bool          m_raw_mesh_bounding_box_valid;

    // Called by Print::apply() to set the model pointer after making a copy.
    friend class Print;
    friend class SLAPrint;
    void        set_model(Model *model) { m_model = model; }

    // Undo / Redo through the cereal serialization library
	friend class cereal::access;
	friend class UndoRedo::StackImpl;
	// Used for deserialization -> Don't allocate any IDs for the ModelObject or its config.
	ModelObject() :
        ObjectBase(-1), config(-1), layer_height_profile(-1),
        m_model(nullptr), m_bounding_box_valid(false), m_raw_bounding_box_valid(false), m_raw_mesh_bounding_box_valid(false) {
		assert(this->id().invalid());
        assert(this->config.id().invalid());
        assert(this->layer_height_profile.id().invalid());
	}
    template<class Archive> void save(Archive& ar) const {
        ar(cereal::base_class<ObjectBase>(this));
        Internal::StaticSerializationWrapper<ModelConfigObject const> config_wrapper(config);
        Internal::StaticSerializationWrapper<LayerHeightProfile const> layer_heigth_profile_wrapper(layer_height_profile);
        ar(name, module_name, input_file, instances, volumes, config_wrapper, layer_config_ranges, layer_heigth_profile_wrapper,
            sla_support_points, sla_points_status, sla_drain_holes, printable, origin_translation, brim_points,
            m_bounding_box, m_bounding_box_valid, m_raw_bounding_box, m_raw_bounding_box_valid, m_raw_mesh_bounding_box, m_raw_mesh_bounding_box_valid,
            cut_connectors, cut_id);
    }
    template<class Archive> void load(Archive& ar) {
        ar(cereal::base_class<ObjectBase>(this));
        Internal::StaticSerializationWrapper<ModelConfigObject> config_wrapper(config);
        Internal::StaticSerializationWrapper<LayerHeightProfile> layer_heigth_profile_wrapper(layer_height_profile);
        // BBS: add backup, check modify
        SaveObjectGaurd gaurd(*this);
        ar(name, module_name, input_file, instances, volumes, config_wrapper, layer_config_ranges, layer_heigth_profile_wrapper,
            sla_support_points, sla_points_status, sla_drain_holes, printable, origin_translation, brim_points,
            m_bounding_box, m_bounding_box_valid, m_raw_bounding_box, m_raw_bounding_box_valid, m_raw_mesh_bounding_box, m_raw_mesh_bounding_box_valid,
            cut_connectors, cut_id);
        std::vector<ObjectID> volume_ids2;
        std::transform(volumes.begin(), volumes.end(), std::back_inserter(volume_ids2), std::mem_fn(&ObjectBase::id));
        if (volume_ids != volume_ids2)
            Slic3r::save_object_mesh(*this);
        volume_ids.clear();
    }

    // Called by Print::validate() from the UI thread.
    unsigned int update_instances_print_volume_state(const BuildVolume &build_volume);
};

成员变量:

m_model:用来保存上级对象指针。在构造函数中传进来。可以通过model->add_object()来创建一个ModelObject类对象,数据会保存在model->objects中。

ModelObject类除了有instances、volumes外,还会有config用来保存模型参数,比如耗材颜色之类的。

4、Model模型

class Model final : public ObjectBase
{
public:
    // Materials are owned by a model and referenced by objects through t_model_material_id.
    // Single material may be shared by multiple models.
    ModelMaterialMap    materials;
    // Objects are owned by a model. Each model may have multiple instances, each instance having its own transformation (shift, scale, rotation).
    ModelObjectPtrs     objects;
    // Wipe tower object.
    ModelWipeTower	wipe_tower;
    // BBS static members store extruder parameters and speed map of all models
    static std::map<size_t, ExtruderParams> extruderParamsMap;
    static GlobalSpeedMap printSpeedMap;

    // DesignInfo of Model
    std::string stl_design_id;
    std::string design_id;
    std::string stl_design_country;

    std::string  makerlab_region;
    std::string  makerlab_name;
    std::string  makerlab_id;

    std::shared_ptr<ModelDesignInfo> design_info = nullptr;
    std::shared_ptr<ModelInfo> model_info = nullptr;
    std::shared_ptr<ModelProfileInfo> profile_info = nullptr;

    //makerlab information
    std::string mk_name;
    std::string mk_version;
    std::vector<std::string> md_name;
    std::vector<std::string> md_value;

    void SetDesigner(std::string designer, std::string designer_user_id) {
        if (design_info == nullptr) {
            design_info = std::make_shared<ModelDesignInfo>();
        }
        design_info->Designer = designer;
        //BBS tips: clean design user id when set designer
        design_info->DesignerUserId = designer_user_id;
    }

    // Extensions for color print
    // CustomGCode::Info custom_gcode_per_print_z;
    //BBS: replace model custom gcode with current plate custom gcode
    int curr_plate_index{ 0 };
    std::map<int, CustomGCode::Info> plates_custom_gcodes; //map<plate_index, CustomGCode::Info>

    const CustomGCode::Info get_curr_plate_custom_gcodes() const {
        if (plates_custom_gcodes.find(curr_plate_index) != plates_custom_gcodes.end()) {
            return plates_custom_gcodes.at(curr_plate_index);
        }
        return CustomGCode::Info();
    }

    // Default constructor assigns a new ID to the model.
    Model() { assert(this->id().valid()); }
    ~Model();

    /* To be able to return an object from own copy / clone methods. Hopefully the compiler will do the "Copy elision" */
    /* (Omits copy and move(since C++11) constructors, resulting in zero - copy pass - by - value semantics). */
    Model(const Model &rhs) : ObjectBase(-1) { assert(this->id().invalid()); this->assign_copy(rhs); assert(this->id().valid()); assert(this->id() == rhs.id()); }
    // BBS: remove explicit, prefer use move constructor in function return model
    Model(Model &&rhs) : ObjectBase(-1) { assert(this->id().invalid()); this->assign_copy(std::move(rhs)); assert(this->id().valid()); assert(this->id() == rhs.id()); }
    Model& operator=(const Model &rhs) { this->assign_copy(rhs); assert(this->id().valid()); assert(this->id() == rhs.id()); return *this; }
    Model& operator=(Model &&rhs) { this->assign_copy(std::move(rhs)); assert(this->id().valid()); assert(this->id() == rhs.id()); return *this; }

    OBJECTBASE_DERIVED_COPY_MOVE_CLONE(Model)

    static Model read_from_step(const std::string&                                      input_file,
                                LoadStrategy                                            options,
                                ImportStepProgressFn                                    stepFn,
                                StepIsUtf8Fn                                            stepIsUtf8Fn,
                                std::function<int(Slic3r::Step&, double&, double&, bool&)>     step_mesh_fn,
                                double                                                  linear_defletion,
                                double                                                  angle_defletion,
                                bool                                                    is_split_compound);

    //BBS: add part plate related logic
    // BBS: backup
    //BBS: is_xxx is used for is_bbs_3mf when loading 3mf, is used for is_inches when loading amf
    static Model read_from_file(
        const std::string& input_file,
        DynamicPrintConfig* config = nullptr, ConfigSubstitutionContext* config_substitutions = nullptr,
        LoadStrategy options = LoadStrategy::AddDefaultInstances, PlateDataPtrs* plate_data = nullptr,
        std::vector<Preset*>* project_presets = nullptr, bool* is_xxx = nullptr, Semver* file_version = nullptr, Import3mfProgressFn proFn = nullptr,
                                ImportstlProgressFn        stlFn                = nullptr,
                                BBLProject *               project              = nullptr,
                                int                        plate_id             = 0,
                                ObjImportColorFn           objFn                = nullptr
                                );
    // BBS
    static bool    obj_import_vertex_color_deal(const std::vector<unsigned char> &vertex_filament_ids, const unsigned char &first_extruder_id, Model *model);
    static bool    obj_import_face_color_deal(const std::vector<unsigned char> &face_filament_ids, const unsigned char &first_extruder_id, Model *model);
    static double findMaxSpeed(const ModelObject* object);
    static double getThermalLength(const ModelVolume* modelVolumePtr);
    static double getThermalLength(const std::vector<ModelVolume*> modelVolumePtrs);
    static Polygon getBedPolygon() { return Model::printSpeedMap.bed_poly; }
    //BBS static functions that update extruder params and speed table
    static void setPrintSpeedTable(const DynamicPrintConfig& config, const PrintConfig& print_config);
    static void setExtruderParams(const DynamicPrintConfig& config, int filament_count);

    // BBS: backup
    static Model read_from_archive(
        const std::string& input_file,
        DynamicPrintConfig* config, ConfigSubstitutionContext* config_substitutions, En3mfType& out_file_type,
        LoadStrategy options = LoadStrategy::AddDefaultInstances, PlateDataPtrs* plate_data = nullptr, std::vector<Preset*>* project_presets = nullptr, Semver* file_version = nullptr, Import3mfProgressFn proFn = nullptr, BBLProject* project = nullptr);

    // Add a new ModelObject to this Model, generate a new ID for this ModelObject.
    ModelObject* add_object();
    ModelObject* add_object(const char *name, const char *path, const TriangleMesh &mesh);
    ModelObject* add_object(const char *name, const char *path, TriangleMesh &&mesh);
    ModelObject* add_object(const ModelObject &other);
    void         set_assembly_pos(ModelObject * model_object);
    void         delete_object(size_t idx);
    bool         delete_object(ObjectID id);
    bool         delete_object(ModelObject* object);
    void         clear_objects();
    // BBS: backup, reuse objects
    void         collect_reusable_objects(std::vector<ObjectBase *> & objects);
    void         set_object_backup_id(ModelObject const & object, int uuid);
    int          get_object_backup_id(ModelObject const & object); // generate new if needed
    int          get_object_backup_id(ModelObject const & object) const; // generate new if needed

    ModelMaterial* add_material(t_model_material_id material_id);
    ModelMaterial* add_material(t_model_material_id material_id, const ModelMaterial &other);
    ModelMaterial* get_material(t_model_material_id material_id) {
        ModelMaterialMap::iterator i = this->materials.find(material_id);
        return (i == this->materials.end()) ? nullptr : i->second;
    }

    void          delete_material(t_model_material_id material_id);
    void          clear_materials();
    bool          add_default_instances();
    // Returns approximate axis aligned bounding box of this model
    BoundingBoxf3 bounding_box() const;
    BoundingBoxf3 bounding_box_in_assembly_view() const;
    // Set the print_volume_state of PrintObject::instances,
    // return total number of printable objects.
    unsigned int  update_print_volume_state(const BuildVolume &build_volume);
    // Returns true if any ModelObject was modified.
    bool 		  center_instances_around_point(const Vec2d &point);
    void 		  translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
    TriangleMesh  mesh() const;

    // Croaks if the duplicated objects do not fit the print bed.
    void duplicate_objects_grid(size_t x, size_t y, coordf_t dist);

    bool 		  looks_like_multipart_object() const;
    void 		  convert_multipart_object(unsigned int max_extruders);
    bool          looks_like_imperial_units() const;
    void          convert_from_imperial_units(bool only_small_volumes);
    bool          looks_like_saved_in_meters() const;
    void          convert_from_meters(bool only_small_volumes);
    int           removed_objects_with_zero_volume();

    // Ensures that the min z of the model is not negative
    void 		  adjust_min_z();

    void 		  print_info() const { for (const ModelObject *o : this->objects) o->print_info(); }

    // Propose an output file name & path based on the first printable object's name and source input file's path.
    std::string   propose_export_file_name_and_path() const;
    // Propose an output path, replace extension. The new_extension shall contain the initial dot.
    std::string   propose_export_file_name_and_path(const std::string &new_extension) const;
    //BBS: add auxiliary files temp path
    std::string   get_auxiliary_file_temp_path();

    // BBS: backup
    std::string   get_backup_path();
    std::string   get_backup_path(const std::string &sub_path);
    void          set_backup_path(const std::string &path);
    void          load_from(Model & model);
    bool          is_need_backup() { return need_backup;  }
    void          set_need_backup();
    void          remove_backup_path_if_exist();

    // Checks if any of objects is painted using the fdm support painting gizmo.
    bool          is_fdm_support_painted() const;
    // Checks if any of objects is painted using the seam painting gizmo.
    bool          is_seam_painted() const;
    // Checks if any of objects is painted using the multi-material painting gizmo.
    bool          is_mm_painted() const;

    std::unique_ptr<CalibPressureAdvancePattern> calib_pa_pattern;

private:
    explicit Model(int) : ObjectBase(-1)
        {
        assert(this->id().invalid());
    }
	void assign_new_unique_ids_recursive();
	void update_links_bottom_up_recursive();

	friend class cereal::access;
	friend class UndoRedo::StackImpl;
    template<class Archive> void load(Archive& ar) {
        Internal::StaticSerializationWrapper<ModelWipeTower> wipe_tower_wrapper(wipe_tower);
        ar(materials, objects, wipe_tower_wrapper);
    }
    template<class Archive> void save(Archive& ar) const {
        Internal::StaticSerializationWrapper<ModelWipeTower const> wipe_tower_wrapper(wipe_tower);
        ar(materials, objects, wipe_tower_wrapper);
    }

    //BBS: add aux temp directory
    // BBS: backup
    std::string backup_path;
    bool need_backup = false;
    std::map<int, int> object_backup_id_map; // ObjectId -> backup id;
    int next_object_backup_id = 1;
};

通过wxGetApp().plater()->model()可以拿到保存在Plater::priv结构中的Slic3r::Model  model对象的引用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值