五、二分查找

本文介绍了二分查找算法的原理和要求,强调了其在有序数组中的高效性。详细解析了在搜索旋转排序数组这一特定问题中如何应用二分查找,包括解题思路和具体Java代码实现。最后,分析了算法的时间复杂度和空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、定义

二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列

二、.查找过程

      首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

三、算法要求

  1. 必须采用顺序存储结构
  2. 必须按关键字大小有序排列。

四、算法复杂度

二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果x<a[n/2],则只要在数组a的左半部分继续搜索x,如果x>a[n/2],则只要在数组a的右半部搜索x.

时间复杂度即是while循环的次数。

总共有n个元素,

渐渐跟下去就是n,n/2,n/4,....n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数

由于你n/2^k取整后>=1

即令n/2^k=1

可得k=log2n,(是以2为底,n的对数)

所以时间复杂度可以表示O(h)=O(log2n)


五、常用算法

1、搜索旋转排序数组

leetcode地址https://leetcode-cn.com/problems/search-in-rotated-sorted-array/

介绍:

整数数组 nums 按升序排列,数组中的值 互不相同 。

在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。

给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。

 

示例 1:

输入:nums = [4,5,6,7,0,1,2], target = 0
输出:4
示例 2:

输入:nums = [4,5,6,7,0,1,2], target = 3
输出:-1
示例 3:

输入:nums = [1], target = 0
输出:-1

解题思路和算法

对于有序数组,可以使用二分查找的方法查找元素。

但是这道题中,数组本身不是有序的,进行旋转后只保证了数组的局部是有序的,这还能进行二分查找吗?答案是可以的。

可以发现的是,我们将数组从中间分开成左右两部分的时候,一定有一部分的数组是有序的。拿示例来看,我们从 6 这个位置分开以后数组变成了 [4, 5, 6] 和 [7, 0, 1, 2] 两个部分,其中左边 [4, 5, 6] 这个部分的数组是有序的,其他也是如此。

这启示我们可以在常规二分查找的时候查看当前 mid 为分割位置分割出来的两个部分 [l, mid] 和 [mid + 1, r] 哪个部分是有序的,并根据有序的那个部分确定我们该如何改变二分查找的上下界,因为我们能够根据有序的那部分判断出 target 在不在这个部分:

如果 [l, mid - 1] 是有序数组,且 target 的大小满足 [\textit{nums}[l],\textit{nums}[mid])[nums[l],nums[mid]),则我们应该将搜索范围缩小至 [l, mid - 1],否则在 [mid + 1, r] 中寻找。
如果 [mid, r] 是有序数组,且 target 的大小满足 (\textit{nums}[mid+1],\textit{nums}[r]](nums[mid+1],nums[r]],则我们应该将搜索范围缩小至 [mid + 1, r],否则在 [l, mid - 1] 中寻找。

fig1

java代码实现:

public class RotatedSortedArraySearch {

    public static void main(String[] args) {
        int[] nums = {4, 5, 6, 7, 0, 1, 2};
        System.out.println(new RotatedSortedArraySearch().search(nums, 6));
    }

    public int search(int[] nums, int target) {
        if (nums == null) {
            return -1;
        }
        int length = nums.length;
        if (length == 0) {
            return -1;
        }
        if (length == 1) {
            return nums[0] == target ? nums[0] : -1;
        }
        int start = 0;
        int end = length - 1;
        int mid;

        //比如:1,2,3,4,5,6,7,
        while (start + 1 < end) {
            mid = start + (end - start) / 2;
            if (nums[mid] == target) {
                return mid;
            }
            //旋转只有2种可能
            //1.[start,mid]区间递增
            //2.[mid,end]区间递增
            if (nums[start] < nums[mid]) {
                if (target >= nums[start] && target <= nums[mid]) {// 加等号,因为 start 可能是 target
                    end = mid;  // 在左侧 [start,mid) 查找
                } else {
                    start = mid;
                }
            } else {
                if (target > nums[mid] && target <= nums[end]) {// 加等号,因为 end 可能是 target
                    start = mid; // 在右侧 (mid,end] 查找
                } else {
                    end = mid;
                }
            }
        }
        if (nums[start] == target) {
            return start;
        }
        if (nums[end] == target) {
            return end;
        }
        return -1;
    }
}

复杂度分析

  • 时间复杂度: O(\log n)O(logn),其中 nn 为 \textit{nums}nums 数组的大小。整个算法时间复杂度即为二分查找的时间复杂度 O(\log n)O(logn)。
  • 空间复杂度: O(1)O(1) 。我们只需要常数级别的空间存放变量。

总结

折半查找法也称为二分查找法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。它的基本思想是:(这里假设数组元素呈升序排列)将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x作比较,如果x=a[n/2]则找到x,算法终止;如 果x<a[n/2],则我们只要在数组a的左半部继续搜索x;如果x>a[n/2],则我们只要在数组a的右 半部继续搜索x。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值