CBAPD方法进行图像特征提取识别cifar10数据集

本文介绍了使用TensorFlow构建一个基础卷积神经网络模型对CIFAR-10数据集进行训练,包括卷积层、批量归一化、激活函数、池化、Dropout等组件,并展示了训练集和验证集的精度与损失曲线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense
from tensorflow.keras import Model

np.set_printoptions(threshold=np.inf)

cifar10 = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0


class Baseline(Model):
def __init__(self):
super(Baseline, self).__init__()
self.c1 = Conv2D(filters=6, kernel_size=(5, 5), padding='same') # 卷积层
self.b1 = BatchNormalization() # BN层
self.a1 = Activation('relu') # 激活层
self.p1 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same') # 池化层
self.d1 = Dropout(0.2) # dropout层

self.flatten = Flatten()
self.f1 = Dense(128, activation='relu')
self.d2 = Dropout(0.2)
self.f2 = Dense(10, activation='softmax')

def call(self, x):
x = self.c1(x)
x = self.b1(x)
x = self.a1(x)
x = self.p1(x)
x = self.d1(x)

x = self.flatten(x)
x = self.f1(x)
x = self.d2(x)
y = self.f2(x)
return y


model = Baseline()

model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])

checkpoint_save_path = "./checkpoint/Baseline.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
print('-------------load the model-----------------')
model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
save_weights_only=True,
save_best_only=True)

history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
callbacks=[cp_callback])
model.summary()

# print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
file.write(str(v.name) + '\n')
file.write(str(v.shape) + '\n')
file.write(str(v.numpy()) + '\n')
file.close()

############################################### show ###############################################

# 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']

plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

Epoch 1/5
1563/1563 [==============================] - 7s 5ms/step - loss: 1.6419 - sparse_categorical_accuracy: 0.4071 - val_loss: 1.8442 - val_sparse_categorical_accuracy: 0.3815
Epoch 2/5
1563/1563 [==============================] - 7s 5ms/step - loss: 1.3969 - sparse_categorical_accuracy: 0.4991 - val_loss: 1.3216 - val_sparse_categorical_accuracy: 0.5294
Epoch 3/5
1563/1563 [==============================] - 7s 5ms/step - loss: 1.3215 - sparse_categorical_accuracy: 0.5244 - val_loss: 1.2908 - val_sparse_categorical_accuracy: 0.5325
Epoch 4/5
1563/1563 [==============================] - 7s 5ms/step - loss: 1.2748 - sparse_categorical_accuracy: 0.5456 - val_loss: 1.2685 - val_sparse_categorical_accuracy: 0.5482
Epoch 5/5
1563/1563 [==============================] - 7s 5ms/step - loss: 1.2337 - sparse_categorical_accuracy: 0.5613 - val_loss: 1.3458 - val_sparse_categorical_accuracy: 0.5247
Model: "baseline"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 conv2d (Conv2D)             multiple                  456       
                                                                 
 batch_normalization (BatchN  multiple                 24        
 ormalization)                                                   
                                                                 
 activation (Activation)     multiple                  0         
                                                                 
 max_pooling2d (MaxPooling2D  multiple                 0         
 )                                                               
                                                                 
 dropout (Dropout)           multiple                  0         
                                                                 
 flatten (Flatten)           multiple                  0         
                                                                 
 dense (Dense)               multiple                  196736    
                                                                 
 dropout_1 (Dropout)         multiple                  0         
                                                                 
 dense_1 (Dense)             multiple                  1290      
                                                                 
=================================================================
Total params: 198,506
Trainable params: 198,494
Non-trainable params: 12
_________________________________________________________________

Process finished with exit code 0

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值