ts装饰器

概念

装饰器是一种特殊类型的声明,它能够被附加到类声明、方法、属性或参数上,可以允许使用@<name>注释标记一次性修改类或类成员的行为。

启用方式

  • 在tsconfig文件中修改配置:"compilerOptions": { "target": "ES5", "experimentalDecorators": true }
  • 在命令行输入命令:tsc --target ES5 --experimentalDecorators

使用方法

普通装饰器写法:不能传参

// 定义普通装饰器
function writeClass(params: any) {
    // 不能传参,即params为当前类
    params.prototype.baseSize = '20px';
    params.prototype.write = function() {
        // write方法
    }
}

// 定义类,并用普通装饰器装饰
@writeClass
class Read {
    constructor(){}
}

// 实例化类
let w: any = new Read();
console.log(w.baseSize); // 调用装饰器封装的属性

装饰器工厂写法:可以传参

// 定义装饰器工厂
function writeClass(params: string) {
    return function(target: any) {
        target.prototype.baseSize = params; // params传参
    }
}

// 定义类,并用装饰器装饰,并传参
@writeClass('30px')
class Read {
    constructor(){}
}

// 实例化类
let w: any = new Read();
console.log(w.baseSize); // 调用装饰器封装的属性,通过传参控制的值

分类

类装饰器

上述例子即为类装饰器,他的表达式在运行时当做函数被调用

属性装饰器

属性装饰器的表达式在运行时也被当做函数调用,但是他传三个参数值

target(对于静态成员来说是类的构造函数;对于实例成员来说是类的原型对象)、

name(成员名称)、

descriptor(成员的属性描述符)。

Object.defineProperty的三个参数用法类似。

// 定义属性装饰器
function readonly(value: boolean) {
  return function (target: any, name: string, descriptor: PropertyDescriptor) {
    descriptor.writable = value;
  }
}

class Person {

    // 定义属性,并用装饰器装饰,传参
    @readonly(false)
    married() {
        console.log('我只能查看,不能修改');
    }
}

const e = new Person();
e.married();

方法装饰器

同属性装饰器类似,他也传3个参数targetpropertyNamedescriptor

参数装饰器

他传入的3个参数分别是target、name、index(参数在函数参数列表中的索引

// 定义参数装饰器
function write(param: string) {
  return function (target: any, name: string, index: number) {
    console.log(index)
  }
}

class Person {
    
    // 定义方法并修饰参数装饰器,传参
    write(@write('paper') size: string, @write('A4') name: string) {
        console.log('方法调用');
    }
}

// paper
// A4
// 1
// 0

各装饰器的执行顺序

如果在一段代码中同时定义了1个方法装饰器、1个类装饰器、1个属性装饰器、2个参数装饰器。

执行顺序为:属性装饰器 > 参数2装饰器 > 参数1装饰器 > 方法装饰器 > 类装饰器

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

妍思码匠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值