1. 从happynear 下载 window版本的caffe
2.编译convert_mnist_data工程 (用于之后的训练数据转换)
3.从http://yann.lecun.com/exdb/mnist/ 下载mnist数据集 可参考脚本 data/mnist/get_mnist.sh
获取到t10k-images-idx3-ubyte、t10k-labels-idx1-ubyte、train-images-idx3-ubyte、train-labels-idx1-ubyte(注意文件大小)
4.构造mnist数据 参考example/mnist/creae_mnist.sh (window下改为creae_mnist.bat)
此步骤要保证convert_mnist_data工程以及成功编译,且生成convert_mnist_data.exe(linux下为convert_mnist_data.bin)
运行上诉脚本后,生成mnist_test_lmdb和mnist_train_lmdb文件夹
5.打开caffe工程,配置属性->调试->命令参数 --solver=../../examples/mnist/lenet_solver.prototxt (训练参数,而不是网络结构)
6.这里需要注意的是,新mnist为lmdb格式,而老的是levelmdb格式,需要在lenet_train_test.prototxt中进行修改:
backend: LEVELMDB -> backend: LMDB
1. git clone caffe
2. mv Makefile.config.example Makefile.config(CPU)
Makefile.config BLAS := atlas -> BLAS := open
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
3. apt-get install libprotobuf-dev
apt-get install libboost-dev
apt-get install libgflags-dev
apt-get install libgoogle-glog-dev
apt-get install libleveldb-dev
apt-get install liblmdb-dev
apt-get install libhdf5-dev
apt-get install libboost-system1.55-dev
apt-get install libboost-filesystem1.55-dev
apt-get install libboost-thread1.55-dev
apt-get install libsnappy-dev
apt-get install libatlas-base-dev
4.
make all -j4
make test -j4