数据结构和算法 笔记

时间复杂度:

时间频度:T(n)一个算法中的语句执行次数称为语句频度或时间频度

n : 算法规模

log : 如果 a^x = N ( a>0,且a≠1) , 那么数x叫做以a为底N的对数(logarithm) , 

记作 x=log(a)N , 其中 , a叫做对数的底数 , N叫做帧数。

算法时间复杂度的定义:

在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。                         

算法的时间复杂度,也就是算法的时间量度,记作:T(n)= O(f(n))。

它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。

其中f(n)是问题规模n的某个函数。

用大写O()来体现算法时间复杂度的记法,我们称之为大O记法

 时间复杂度术语
O(1)常数阶
O(n)线性阶
O(n^2)平方阶
O(logn)对数阶
O(nlogn)nlogn阶
O(n^3)立方阶
O(2^n)指数阶
常用的时间复杂度所耗费的时间从小到大依次是:O(1) < O(logn) < (n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)





内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)数学优化概率(MOP)动态控制搜索过程,在全局探索局部开发之间实现平衡。文章详细解析了算法的初始化、勘探开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化并行计算等改进策略。; 适合人群:具备一定Python编程基础优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOAMOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值