Spark Submitting Applications
Spark的bin目录中的Spark -submit脚本用于在集群上启动应用程序。它可以通过一个统一的接口使用所有Spark支持的集群管理器,这样您就不必配置您的应用程序,尤其是对每个应用程序dd
Bundling Your Application’s Dependencies
如果您的代码依赖于其他项目,您将需要将它们与应用程序一起打包,以便将代码分发到Spark集群中
Launching Applications with spark-submit
./bin/spark-submit \
--class <main-class> \
--master <master-url> \
--deploy-mode <deploy-mode> \
--conf <key>=<value> \
... # other options
<application-jar> \
[application-arguments]
Some of the commonly used options are:
- --class: The entry point for your application (e.g. org.apache.spark.examples.SparkPi)
- --master: The master URL for the cluster (e.g. spark://23.195.26.187:7077)
- --deploy-mode: Whether to deploy your driver on the worker nodes (cluster) or locally as an external client (client) (default: client) †
- --conf: Arbitrary Spark configuration property in key=value format. For values that contain spaces wrap “key=value” in quotes (as shown).
- application-jar: Path to a bundled jar including your application and all dependencies. The URL must be globally visible inside of your cluster, for instance, an hdfs:// path or a file:// path that is present on all nodes.
- application-arguments: Arguments passed to the main method of your main class, if any
Run application locally on 8 cores
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master local[8] \
/path/to/examples.jar \
100
# Run on a Spark standalone cluster in client deploy mode
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://207.184.161.138:7077 \
--executor-memory 20G \
--total-executor-cores 100 \
/path/to/examples.jar \
1000
# Run on a Spark standalone cluster in cluster deploy mode with supervise
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://207.184.161.138:7077 \
--deploy-mode cluster \
--supervise \
--executor-memory 20G \
--total-executor-cores 100 \
/path/to/examples.jar \
1000
# Run on a YARN cluster
export HADOOP_CONF_DIR=XXX
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \ # can be client for client mode
--executor-memory 20G \
--num-executors 50 \
/path/to/examples.jar \
1000
# Run a Python application on a Spark standalone cluster
./bin/spark-submit \
--master spark://207.184.161.138:7077 \
examples/src/main/python/pi.py \
1000
# Run on a Mesos cluster in cluster deploy mode with supervise
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master mesos://207.184.161.138:7077 \
--deploy-mode cluster \
--supervise \
--executor-memory 20G \
--total-executor-cores 100 \
http://path/to/examples.jar \
1000
# Run on a Kubernetes cluster in cluster deploy mode
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master k8s://xx.yy.zz.ww:443 \
--deploy-mode cluster \
--executor-memory 20G \
--num-executors 50 \
http://path/to/examples.jar \
1000
SpaSpark的bin目
rk的bin目