
andrew
文章平均质量分 87
普通网友
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
deeplearning.ai lecture2-week2-optimization methods
Optimization methods Optimization Methods Until now, you've always used Gradient Descent to update the parameters and minimize the cost. In this notebook, you will learn more advanced optimi原创 2017-12-11 19:51:11 · 1008 阅读 · 0 评论 -
deeplearning.ai-lecture2-week3-Tensorflow Tutorial-homework
TensorFlow Tutorial Welcome to this week's programming assignment. Until now, you've always used numpy to build neural networks. Now we will step you through a deep learning framework that will allow原创 2017-12-12 19:44:18 · 1039 阅读 · 0 评论 -
deeplearning.ai-lecture2-week1-Gradient Checking-homework
Gradient Checking Welcome to the final assignment for this week! In this assignment you will learn to implement and use gradient checking. You are part of a team working to make mobile payments avai原创 2017-12-12 19:48:38 · 588 阅读 · 0 评论 -
deeplearning.ai-lecture2-week1-Initialization-homework
Initialization Welcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization met原创 2017-12-12 19:50:14 · 576 阅读 · 1 评论 -
deeplearning.ai-lecture2-week1-regularization-homework
Regularization Welcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity that overfitting can be a serious problem, if the training dataset is not big原创 2017-12-12 19:52:01 · 431 阅读 · 0 评论 -
deeplearning.ai-lecture1-building deep neural network-summary
先上一张summary map 1. L层神经网络参数初始化: 返回各层参数W(1)…W(l-1) def initialize_parameters_deep(layer_dims): for l in range(1,L): parameters['W'+str(l)]=np.random.randn(layer_dims[l],layer_dims[原创 2017-12-12 19:56:38 · 421 阅读 · 0 评论 -
deeplearning.ai-lecture1-building deep neural network steps
该实验主要是实现一些“Helper function”,为下一步实现两层神经网络和L层神经网络做准备,实现一个两层网络或深层网络的步骤如下: Step 1.分别初始化一个两层神经网络和L层神经网络的参数 Step 2: 前向传播的实现: 1.完成一个网络的前向传播的线性部分(linear part),即计算出 Z [l] 2.实现relu和 sigmoid激活函数转载 2017-12-12 20:11:00 · 223 阅读 · 0 评论 -
deeplearning.ai-lecture4-week1-Convolutional Neural Networks: Step by Step
Convolutional Neural Networks: Step by Step Welcome to Course 4's first assignment! In this assignment, you will implement convolutional (CONV) and pooling (POOL) layers in numpy, including both forw原创 2017-12-21 21:09:07 · 268 阅读 · 0 评论