人脸检测

 

待补充

 

import cv2
print(cv2.__file__)
img = cv2.imread('test5.jpg')
#加载人脸特征,该文件在Python安装目录下,下面是我的绝对路径
face_cascade = cv2.CascadeClassifier(r'/Users/wing/anaconda3/lib/python3.6/site-packages/cv2/data/haarcascade_frontalface_default.xml')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#检测出的人脸个数
faces = face_cascade.detectMultiScale(gray,scaleFactor=1.15,minNeighbors =4,minSize=(5,5))
print("Face:{0}".format(len(faces)))
print(len(faces))
for(x,y,w,h) in faces:
      cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv2.namedWindow("Faces")
cv2.imshow("Faces",img)
cv2.waitKey(0)
cv2.destroyAllWindows()

import cv2
import dlib
import numpy as np
predictor_model ='shape_predictor_68_face_landmarks/shape_predictor_68_face_landmarks.dat'
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(predictor_model)
img = cv2.imread('test7.jpg')
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
rects = detector(img_gray,0)
print(rects[0])
for i in range(len(rects)):
    landmarks = np.matrix([[p.x,p.y] for p in predictor(img,rects[i]).parts()])
    print(landmarks,type(landmarks))
    for idx,point in enumerate(landmarks):
        pos = (point[0,0],point[0,1])
        cv2.circle(img,pos,3,color=(0,255,0))
        font = cv2.FONT_HERSHKY_SIMPLEX
        cv2.putText(img,str(idx+1),pos,font,0.5,(0,0,255),1,cv2.LINE_AA)
cv2.imshow("img",img)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值