前段时间的group reading 上,一个senior lecturer发出上述疑问
我想不光是她,很多人都有或有过类似的想法。正好research gate上有这样的问答,我觉得解释的很清楚了---尽管很简短
If I have a dataset, how can I prove that this dataset has a nature of Gaussian Mixture Model GMM?
One reason why GMMs are used without asking the question if the data is GMM distributed lies in the fact that a GMM is a universal function approximator. That is, whatever the original distribution of the data was, when allowing a significant number of mixture components, it is expected that the GMM approaches the true distribution.
As Marco Huber said, GMMs are flexible appr

高斯混合模型(GMM)常用于数据建模,因为它们是通用函数近似器,能通过增加混合成分数量逼近任何原始分布。即使数据原本并非来自GMM,也能通过GMM进行精确建模。这类似于傅立叶变换原理,可通过不同幅值的高斯分布逼近任意分布。
最低0.47元/天 解锁文章
2152

被折叠的 条评论
为什么被折叠?



