(转)Wince读核1-启动流程6

本文介绍了ARM9中断向量表的初始化过程,探讨了中断向量放置在高地址0xffff0000或低地址0x00000000的方法,并详细解析了在高地址初始化中断向量表的具体实现。

5. 中断向量表初始化
接下来的代码进行中断向量表初始化。首先需要介绍一下arm中断的知识。对于arm9,它的中断向量可以放在低地址0x00000000,或者高地址0xffff0000。ce只能将中断向量表放在高地址。这是由ce的整个编译系统决定的。网上有一篇文章"Eboot编译编译器决定中断向量及其实现单一性的原因"(写这篇文章的哥们肯定语文没学好,我也是:(),介绍的挺详细,另外我觉得有两点需要加以补充。一个是pe文件不能拷贝0x400后的部分直接执行,不仅仅是偏移量的问题,在后面介绍pe文件结构的时候会说明;另一个是image映像(nb0)文件的前4k部分是romimage生成的。这4k包含一个signature(0x43454345),一个ROMHDR结构数据的地址。对于eboot.nb0来说,在最开始还包含一个跳转指令0xea0003fe。这个机器码的意思是"b #3fe<<2"。考虑到arm的流水线,实际就是跳转到4k地址处了。
所以如果需要eboot支持中断,可以采取两种途径。一种是模仿内核的中断初始化,在高地址0xffff0000初始化中断向量表,一种是在低地址0x00000000存放中断向量表。对于前一种方法,可以直接参考内核的实现方法。对于后一种方法,首先需要特别修改虚拟地址和物理地址的映射关系,将物理地址映射到虚拟地址0x00000000上,而不是ce默认设定的0x80000000;接着需要修改eboot.bib文件,将RAMIMAGE设置在0x00000000上。最后需要一点小技巧,需要手动修改eboot.nb0的头几十个字节的机器码,改成0xea00xxxx之类的机器指令,目的是将中断处理跳转到真实的中断向量表处。当然,这个真实的中断向量表需要事先设定好。最后声明,这是本人的想法而已,还没有时间动手实践过。
现在回到正题上来。下面这段代码很好懂,从虚拟地址0xffff0000开始连续存储8个指令"ldr     pc, [pc, #0x3E0-8]",然后从虚拟地址0xffff03e0开始存储中断向量表VectorTable。这样的效果就是,在发生中断时,比如irq中断,执行的命令相当于将irq的中断向量IRQHandler的地址装载到pc寄存器中,从而跳转到相应的中断向量处理程序中执行。
     ; Setup the vector area.
      ;
      ;       (r8) = ptr to exception vectors

             add     r7, pc, #VectorInstructions - (.+8)
             ldmia   r7!, {r0-r3}                    ; load 4 instructions
             stmia   r8!, {r0-r3}                    ; store the 4 vector instructions
             ldmia   r7!, {r0-r3}                    ; load 4 instructions
             stmia   r8!, {r0-r3}                    ; store the 4 vector instructions

      ; convert VectorTable to Physical Address
            ldr     r0, =VectorTable                ; (r0) = VA of VectorTable
            mov     r1, r11                         ; (r1) = &OEMAddressTable[0]
            bl      PaFromVa
            mov     r7, r0                          ; (r7) = PA of VectorTable
            add     r8, r8, #0x3E0-(8*4)            ; (r8) = target location of the vector table
            ldmia   r7!, {r0-r3}
            stmia   r8!, {r0-r3}
            ldmia   r7!, {r0-r3}
            stmia   r8!, {r0-r3}
中断处理程序如何处理中断,那是另外一个题目了。

 

http://hi.baidu.com/garnetttt/blog/item/dd4401e93cf7103bb90e2d2a.html

【论文复现】一种基于价格弹性矩阵的居民峰谷分时电价激励策略【需求响应】(Matlab代码实现)内容概要:本文介绍了一种基于价格弹性矩阵的居民峰谷分时电价激励策略,旨在通过需求响应机制优化电力系统的负荷分布。该研究利用Matlab进行代码实现,构建了居民用电行为与电价变动之间的价格弹性模型,通过分析不同时间段电价调整对用户用电习惯的影响,设计合理的峰谷电价方案,引导用户错峰用电,从而实现电网负荷的削峰填谷,提升电力系统运行效率与稳定性。文中详细阐述了价格弹性矩阵的构建方法、优化目标函数的设计以及求解算法的实现过程,并通过仿真验证了所提策略的有效性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力,从事需求响应、电价机制研究或智能电网优化等相关领域的科研人员及研究生。; 使用场景及目标:①研究居民用电行为对电价变化的响应特性;②设计并仿真基于价格弹性矩阵的峰谷分时电价激励策略;③实现需求响应下的电力负荷优化调度;④为电力公司制定科学合理的电价政策提供理论支持和技术工具。; 阅建议:建议者结合提供的Matlab代码进行实践操作,深入理解价格弹性建模与优化求解过程,同时可参考文中方法拓展至其他需求响应场景,如工业用户、商业楼宇等,进一步提升研究的广度与深度。
针对TC275微控制器平台,基于AUTOSAR标准的引导加载程序实现方案 本方案详细阐述了一种专为英飞凌TC275系列微控制器设计的引导加载系统。该系统严格遵循汽车开放系统架构(AUTOSAR)规范进行开发,旨在实现可靠的应用程序刷写与启动管理功能。 心设计严格遵循AUTOSAR分层软件架构。基础软件模块(BSW)的配置与管理完全符合标准要求,确保了与不同AUTOSAR兼容工具链及软件组件的无缝集成。引导加载程序本身作为独立的软件实体,实现了与上层应用软件的完全解耦,其功能涵盖启动阶段的硬件初始化、完整性校验、程序跳逻辑以及通过指定通信接口(如CAN或以太网)接收和验证新软件数据包。 在具体实现层面,工程代码重点处理了TC275芯片特有的多架构与内存映射机制。代码包含了对所有必要外设驱动(如Flash存储器驱动、通信控制器驱动)的初始化与抽象层封装,并设计了严谨的故障安全机制与回滚策略,以确保在软件更新过程中出现意外中断时,系统能够恢复到已知的稳定状态。整个引导流程的设计充分考虑了时序确定性、资源占用优化以及功能安全相关需求,为汽车电子控制单元的固件维护与升级提供了符合行业标准的底层支持。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值