376. Wiggle Subsequence
A sequence of numbers is called a wiggle sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence.
For example, [1,7,4,9,2,5] is a wiggle sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast, [1,4,7,2,5] and [1,7,4,5,5] are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero.
Given a sequence of integers, return the length of the longest subsequence that is a wiggle sequence. A subsequence is obtained by deleting some number of elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order.
Example 1:
Input: [1,7,4,9,2,5]
Output: 6
Explanation: The entire sequence is a wiggle sequence.
Example 2:
Input: [1,17,5,10,13,15,10,5,16,8]
Output: 7
Explanation: There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8].
Example 3:
Input: [1,2,3,4,5,6,7,8,9]
Output: 2
Follow up:
Can you do it in O(n) time?
方法1: two pointers (错了!一定要分清subsequence 和 subarray的区别)
思路:
遍历第一遍得出一个sign的vector。第二遍右指针开始向右遍历检查是否有nums[i - 1] 和nums[i]相同,如果有:1. 更新result,2. 左指针接替右指针,3. 右指针后移。
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if (nums.size() <= 1){ return nums.size();}
if (nums.size() == 2) {return nums[0] == nums[1] ? 1 : 2;}
int left = 1, right = 2;
int prevSign = nums[1] - nums[0] > 0 ? 1 : -1;
int curSign;
int result = 0;
while (right < nums.size()){
int diff = nums[right] - nums[right - 1];
if (prevSign * diff >= 0 ){
left = right;
}
else {
result = max(result, right - left + 2);
}
prevSign = diff > 0 ? 1 : -1;
right ++;
}
return result;
}
};
方法1: dynamic programming
思路:
用两个dp记录前面到第i项结束的wiggle subseq 长度,和当前比较。如果diff > 0, dpPos[i] = dpNeg[i - 1] + 1,dpNeg[i] = dpNeg[i - 1]. 如果diff < 0, 那么dpNeg[i] = dpPos[i - 1] + 1, dpPos[i] = dpPos[i - 1]. if diff == 0, dpPos[i] = dpPos[i - 1], dpNeg[i] = dpNeg[i - 1]
Complexity
Time complexity: O(n)
Space complexity: O(n)
易错点
- (wiggle dp)
- initialization = 1,for convenience
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if (nums.size() <= 1){ return nums.size();}
if (nums.size() == 2) {return nums[0] == nums[1] ? 1 : 2;}
vector<int> dpPos(nums.size() , 1);
vector<int> dpNeg(nums.size() , 1);
for (int i = 1; i < nums.size(); i ++){
int diff = nums[i] - nums[i - 1];
if (diff > 0){
dpNeg[i] = dpPos[i - 1] + 1;
dpPos[i] = dpPos[i - 1];
}
else if (diff < 0){
dpPos[i] = dpNeg[i - 1] + 1;
dpNeg[i] = dpNeg[i - 1];
}
else {
dpPos[i] = dpPos[i - 1];
dpNeg[i] = dpNeg[i - 1];
}
}
return max(dpPos.back(), dpNeg.back());
}
};
// [1,17,5,10,13,15,10,5,16,8]
//
// dpPos 1 2 2 4 4 4 4 4 6 6
// dpNeg 1 1 3 3 3 3 5 5 5 7
// [1, 7, 4, 5, 5]
// dpPos 1 2 2 4 4
// dpNeg 1 1 3 3 3
// [1, 7, 4, 9, 2, 5]
// dpPos 1 2 2 4 4 6
// dpNeg 1 1 3 3 5 5
方法2: dynamic programming,one-dimension/greedy
思路:
降维之后,省略一些步骤,不知道为什么就成greedy了。另外这个方法很巧妙的利用min(n, max(dpPos, dpNeg)) 来解决了上面0, 1,2 长度的所有edge cases。。。。!
Complexity
Time complexity: O(n)
Space complexity: O(1)
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
int n = nums.size();
int dpPos = 1;
int dpNeg = 1;
for (int i = 1; i < nums.size(); i ++){
int diff = nums[i] - nums[i - 1];
if (diff > 0){
dpNeg = dpPos + 1;
}
else if (diff < 0){
dpPos = dpNeg + 1;
}
}
return min(n, max(dpPos, dpNeg));
}
};