309. Best Time to Buy and Sell Stock with Cooldown

本文介绍了一种使用动态规划解决股票交易最大利润问题的方法,考虑到买入卖出的冷却期限制。通过维护buy、sell、cooldown三个状态,实现了高效求解。

309. Best Time to Buy and Sell Stock with Cooldown

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:

You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)
Example:

Input: [1,2,3,0,2]
Output: 3 
Explanation: transactions = [buy, sell, cooldown, buy, sell]

方法1: dynamic programming

思路:

花花酱: https://www.youtube.com/watch?v=oL6mRyTn56M
维持三个变量,标示第 i 天的状态:buy,sell,cooldown。这三个状态的转移关系如下:
在这里插入图片描述
也就是说sold只能从hold来,sold只能变成rest,上面的关系可以表达为如下的转移方程:
buy[i] = max(rest[i-1] - price, buy[i-1])
sell[i] = max(buy[i-1] + price, sell[i-1])
rest[i] = max(sell[i-1], buy[i-1], rest[i-1])

观察上面的方程发现,因为rest[i] = sold[i - 1],进一步化简
buy[i] = max(sell[i-2] - price, buy[i-1])
sell[i] = max(buy[i-1] + price, sell[i-1])

最终可以降维成如下代码:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
         int hold = INT_MIN;
         int sold = 0;
         int rest = 0;
        
        for (int p: prices){
            int prev_sold = sold;
            sold = hold + p;
            hold = max(hold, rest - p);
            rest = max(rest, prev_sold);
        }
        return max(rest, sold);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值