44444444444444

https://www.duba.com/
INT CallSpiReadWithEntry(INT channel, SPIDataEntry *entry,INT readLen,BYTE *readData) { INT i = 0; printf("===>>>CallSpiReadWithEntry = %d\n",readLen); if (!IsSPIDataValid(entry)) { printf("结构体中无有效数据,无法调用 SpiRead。\n"); return -1; } printf("222===>>>CallSpiReadWithEntry channel = %d writeLen = %d readLen = %d\n",channel,entry->writeLen,readLen); for (i = 0; i < entry->writeLen; i++) { printf("%02X ", entry->spidata[i]); // 每个字节以 2 位十六进制输出 } printf("\n"); INT result = SpiRead(channel, entry->writeLen, entry->spidata, readLen, readData); printf("3333===>>>CallSpiReadWithEntry = %d\n",readLen); //读完之后将数据清除 memset(entry->spidata, 0, MAX_SPI_DATA); entry->writeLen = 0; entry->index = -1; // 标记为无效 if (result == 0) { printf("读取成功,数据为:"); for (INT i = 0; i < readLen; i++) { printf("0x%02X ", readData[i]); } printf("\n"); } return result; } INT ComReadSPIData(INT readLen,BYTE *readData) { INT channel = 1; INT ret = SUCCESS; INT i = 0; printf("===>>>ComReadSPIData currentCallIndex = %d\n",currentCallIndex); for (i = 0; i < currentCallIndex; i++) { printf("===>>>readLen = %d index = %d, writeLen = %d\n",readLen,spiEntries[i].index,spiEntries[i].writeLen); ret = CallSpiReadWithEntry(channel, &spiEntries[i],readLen,readData); } currentCallIndex = 0; return ret; } INT SpiRead(INT channel, INT writeLen, BYTE *writeData, INT readLen, BYTE *readData) { INT ret = SUCCESS; WORD32 *rData32 = (WORD32*)readData; WORD32 *wData32 = (WORD32*)writeData; WORD32 wData = 0; INT i = 0; INT readCnt = 0; INT outTimeCnt = 0; WORD64 baseAddr = ComSpiGetAddress(channel); printf("1111SpiRead ===>>>writeLen = %d readLen = %d\n",writeLen,readLen); for(i = 0; i < writeLen; i++) { printf("%02X ", writeData[i]); // 每个字节以两位十六进制显示 } printf("\n"); if(writeLen <= SPI_SEND_MAX_DATA) { ret += ComFpgaWriteReg(baseAddr, SPI_SEND_LEN, writeLen); printf("222222222222\n"); for(i = 0; i < (writeLen/SPI_DATA_UNIT); i++) { printf("333333333333\n"); ret += ComFpgaWriteReg(baseAddr, (SPI_DATA_BASE_ADDR + i * SPI_DATA_UNIT), *wData32++); } if((writeLen % SPI_DATA_UNIT) != 0) { printf("44444444444444\n"); wData = ((*wData32) & (0xFFFFFFFF >> (8 * (SPI_DATA_UNIT - (writeLen % SPI_DATA_UNIT))))); 最后以上系统重启了 z
09-20
INT CallSpiReadWithEntry(INT channel, SPIDataEntry *entry,INT readLen,BYTE *readData) { INT i = 0; printf(“=>>>CallSpiReadWithEntry = %d\n",readLen); if (!IsSPIDataValid(entry)) { printf(“结构体中无有效数据,无法调用 SpiRead。\n”); return -1; } printf("222=>>>CallSpiReadWithEntry channel = %d writeLen = %d readLen = %d\n”,channel,entry->writeLen,readLen); for (i = 0; i < entry->writeLen; i++) { printf(“%02X “, entry->spidata[i]); // 每个字节以 2 位十六进制输出 } printf(”\n”); INT result = SpiRead(channel, entry->writeLen, entry->spidata, readLen, readData); printf(“3333===>>>CallSpiReadWithEntry = %d\n”,readLen); //读完之后将数据清除 memset(entry->spidata, 0, MAX_SPI_DATA); entry->writeLen = 0; entry->index = -1; // 标记为无效 if (result == 0) { printf("读取成功,数据为:"); for (INT i = 0; i < readLen; i++) { printf("0x%02X ", readData[i]); } printf("\n"); } return result; } INT ComReadSPIData(INT readLen,BYTE *readData) { INT channel = 1; INT ret = SUCCESS; INT i = 0; printf(“=>>>ComReadSPIData currentCallIndex = %d\n",currentCallIndex); for (i = 0; i < currentCallIndex; i++) { printf("=>>>readLen = %d index = %d, writeLen = %d\n”,readLen,spiEntries[i].index,spiEntries[i].writeLen); ret = CallSpiReadWithEntry(channel, &spiEntries[i],readLen,readData); } currentCallIndex = 0; return ret; } INT SpiRead(INT channel, INT writeLen, BYTE *writeData, INT readLen, BYTE *readData) { INT ret = SUCCESS; WORD32 *rData32 = (WORD32*)readData; WORD32 *wData32 = (WORD32*)writeData; WORD32 wData = 0; INT i = 0; INT readCnt = 0; INT outTimeCnt = 0; WORD64 baseAddr = ComSpiGetAddress(channel); printf("1111SpiRead ===>>>writeLen = %d readLen = %d\n",writeLen,readLen); for(i = 0; i < writeLen; i++) { printf("%02X ", writeData[i]); // 每个字节以两位十六进制显示 } printf("\n"); if(writeLen <= SPI_SEND_MAX_DATA) { ret += ComFpgaWriteReg(baseAddr, SPI_SEND_LEN, writeLen); printf("222222222222\n"); for(i = 0; i < (writeLen/SPI_DATA_UNIT); i++) { printf("333333333333\n"); ret += ComFpgaWriteReg(baseAddr, (SPI_DATA_BASE_ADDR + i * SPI_DATA_UNIT), *wData32++); } if((writeLen % SPI_DATA_UNIT) != 0) { printf("44444444444444\n"); wData = ((*wData32) & (0xFFFFFFFF >> (8 * (SPI_DATA_UNIT - (writeLen % SPI_DATA_UNIT))))); writeData是一个0x9f 最后一行代码系统重启了
09-20
【最优潮流】直流最优潮流(OPF)课设(Matlab代码实现)内容概要:本文档主要围绕“直流最优潮流(OPF)课设”的Matlab代码实现展开,属于电力系统优化领域的教学与科研实践内容。文档介绍了通过Matlab进行电力系统最优潮流计算的基本原理与编程实现方法,重点聚焦于直流最优潮流模型的构建与求解过程,适用于课程设计或科研入门实践。文中提及使用YALMIP等优化工具包进行建模,并提供了相关资源下载链接,便于读者复现与学习。此外,文档还列举了大量与电力系统、智能优化算法、机器学习、路径规划等相关的Matlab仿真案例,体现出其服务于科研仿真辅导的综合性平台性质。; 适合人群:电气工程、自动化、电力系统及相关专业的本科生、研究生,以及从事电力系统优化、智能算法应用研究的科研人员。; 使用场景及目标:①掌握直流最优潮流的基本原理与Matlab实现方法;②完成课程设计或科研项目中的电力系统优化任务;③借助提供的丰富案例资源,拓展在智能优化、状态估计、微电网调度等方向的研究思路与技术手段。; 阅读建议:建议读者结合文档中提供的网盘资源,下载完整代码与工具包,边学习理论边动手实践。重点关注YALMIP工具的使用方法,并通过复现文中提到的多个案例,加深对电力系统优化问题建模与求解的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值