Description:
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product.
Example 1:
Input: [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:
Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
Analysis:
还是动态规划,类似于53题
区别在于,当nums[i]是负数时,要求的最大值是,先前子数组中的最小值*nums[i],所以还需要保存先前子数组中的最小值。
动态规划,构造局部最优解和全局最优解,所求的全局最优解和局部最优解的关系。
Solution:
class Solution {
public:
int maxProduct(vector<int>& nums) {
int ret = INT_MIN;
int imax = 1, imin = 1;
for (int i = 0; i < nums.size(); i ++) {
if (nums[i] < 0) {
int temp = imax;
imax = imin;
imin = temp;
}
imax = max(imax * nums[i], nums[i]);
imin = min(imin * nums[i], nums[i]);
if (imax > ret)
ret = imax;
}
return ret;
}
};
本文探讨了寻找具有最大乘积的连续子数组问题,通过动态规划方法解决,考虑到正负数的影响,需要同时跟踪最大值和最小值,提供了一个C++实现方案。
734

被折叠的 条评论
为什么被折叠?



