7. 整数反转

本文详细解析了一道经典的整数反转算法题,包括其难点、关键实现细节及边界条件处理等,并提供了一个高效的C++解决方案。

家人们,我出息了

 

题目

7. 整数反转

难度简单2739

给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。

如果反转后整数超过 32 位的有符号整数的范围 [−231,  231 − 1] ,就返回 0。

假设环境不允许存储 64 位整数(有符号或无符号)。

 

示例 1:

输入:x = 123
输出:321

示例 2:

输入:x = -123
输出:-321

示例 3:

输入:x = 120
输出:21

示例 4:

输入:x = 0
输出:0

 

解析

while循环中间的式子很好想,这题重点在于题目给了int 限制

 

 

注意几个点

1.  -123%10 = -3

2. 2^31=2 147 483 648 

3.  sum= (sum< -2147483649/10 || sum> 2147483649/10) ? 0: (sum*10+i);  这个式子为什么可以,会不会漏掉一些数?

     分析知道 sum 在做 sum*10+i 之前 必须保证   −2^31≤sum*10+i≤2^31−1    那么负数这一边,sum<-2147483649/10 可以表示以5或大于5结尾直接返回0(因为乘以10之后必然超过范围)。正数这一边,

 sum> 2147483649/10 可以也表示以5或大于5结尾直接返回0(因为乘以10之后必然超过范围)。那这样挺合理的,那要不要考虑最后一位呢?比如正数时,214748364 最后一位万一是9岂不是超过范围了?

然而输入其实已经限制了是 int x,也就是输入 x 最大就是 2147483648 就保证了翻转的最后一位最长情况下也只能是1或2 而不会是9。 负数时也是同理。 所以这么可以这么写。

 

c++

class Solution {
public:
    int reverse(int x) {
        int i=0;
        int sum=0;
        while(x!=0)
        {
            i=x%10;
            x=x/10;
            sum= (sum< -2147483649/10 || sum> 2147483649/10) ? 0: (sum*10+i);
        }
        return sum;
    }
};

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值