HDU 4642 Fliping game

本文介绍了一种基于特殊棋盘的游戏胜负判断方法,通过分析棋盘上特定位置的初始状态来预测最终胜者。当最右下角的棋子为特定状态时,先手玩家获胜,反之则后手玩家获胜。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Problem Description
Alice and Bob are playing a kind of special game on an N*M board (N rows, M columns). At the beginning, there are N*M coins in this board with one in each grid and every coin may be upward or downward freely. Then they take turns to choose a rectangle (x 1, y 1)-(n, m) (1 ≤ x 1≤n, 1≤y 1≤m) and flips all the coins (upward to downward, downward to upward) in it (i.e. flip all positions (x, y) where x 1≤x≤n, y 1≤y≤m)). The only restriction is that the top-left corner (i.e. (x 1, y 1)) must be changing from upward to downward. The game ends when all coins are downward, and the one who cannot play in his (her) turns loses the game. Here's the problem: Who will win the game if both use the best strategy? You can assume that Alice always goes first.
 

Input
The first line of the date is an integer T, which is the number of the text cases.
Then T cases follow, each case starts with two integers N and M indicate the size of the board. Then goes N line, each line with M integers shows the state of each coin, 1<=N,M<=100. 0 means that this coin is downward in the initial, 1 means that this coin is upward in the initial.
 

Output
For each case, output the winner’s name, either Alice or Bob.
 

Sample Input
  
2 2 2 1 1 1 1 3 3 0 0 0 0 0 0 0 0 0
 

Sample Output
  
Alice Bob
 

Source


解题思路:一看就是多校的签到题,很水的数学题,证明过程下次下个详细的,就是说,按顺序输入的过程中,如果最右下角的那个点是1的话,那么就需要奇数步
才能搞定,所以A赢,其他情况下B赢。


#include <iostream>
# include<iostream>
# include<cstdio>

using namespace std;

int main(void)
{
   int t;
   scanf("%d",&t);
   while( t-- )
   {
       int n,m;
       scanf("%d%d",&n,&m);
       int x;
       for( int i = 0;i < n;i++)
       {
           for( int j = 0;j < m;j++ )
           {
               scanf("%d",&x);
           }
       }
       if( x )
       printf("Alice\n");
       else
       printf("Bob\n");
   }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值